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Lung cancer is the leading cause of cancer-related 
deaths worldwide, with a predicted 5-year survival rate of 
16% [1]. More than 85% of cases are classified as non-small 
cell lung cancer (NSCLC), with lung adenocarcinoma 
(LUAD) being the most common pathological subtype [2]. 
In recent decades, the discovery of driver gene mutations 
in tumors has allowed for the introduction of personalized 

molecular-targeted therapy for NSCLC [3]. However, this 
approach is not feasible for treating tumors that do not 
carry gene alterations, and the inevitable resistance to 
tyrosine kinase inhibitors further suggests the need for 
alternative therapeutic options in lung cancer patients 
[4]. In recent decades, immunotherapy targeting immune 
checkpoints has made great progress in the treatment of 
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Abstract Objective  Tumor-infiltrating immune cells and stromal cells in the tumor microenvironment (TME) 
significantly affect the prognosis of and immune response to lung adenocarcinoma (LUAD). In this study, 
we aimed to develop a novel TME-related prognostic model based on immune and stromal genes in LUAD.
Methods  LUAD data from the TCGA database were used as the training cohort, and three Gene 
Expression Omnibus (GEO) datasets were used as the testing cohort. The Estimation of STromal and 
Immune cells in MAlignant Tumor tissues using Expression data algorithm was used to analyze the immune 
and stromal genes involved in the TME. Kaplan-Meier and Cox regression analyses were used to identify 
prognostic genes and construct a TME-related prognostic model. Gene set enrichment analysis and TIMER 
were used to analyze the immune features and signaling pathways of the model.
Results  A TME-related prognostic model based on six hub genes was generated that significantly 
stratified patients into the high- and low-risk groups in terms of overall survival. The model had strong 
predictive ability in both the training (TCGA) and testing (GEO) datasets and could serve as an independent 
prognostic factor for LUAD. Moreover, the low-risk group was characterized by greater immune cell 
infiltration and antitumor immune activity than the high-risk group. Importantly, the signature was closely 
associated with immune checkpoint molecules, which may serve as a predictor of patient response to 
immunotherapy. Finally, the hub genes BTK, CD28, INHA, PIK3CG, TLR4, and VEGFD were considered 
novel prognostic biomarkers for LUAD and were significantly correlated with immune cells. 
Conclusion  The TME-related prognostic model could effectively predict the prognosis and reflect the 
TME status of LUAD. These six hub genes provided novel insights into the development of new therapeutic 
strategies.
Key words: lung adenocarcinoma; tumor microenvironment; immunotherapy; immune checkpoint molecules; 
prognostic biomarkers
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NSCLC [5]. Immune checkpoint inhibitors (ICIs) enhance 
the antitumor effects of the immune system to obtain a 
potent and durable cure [6]. However, the overall response 
rate to ICIs is relatively low, and only one-fifth of cancer 
patients benefit from these agents [7]. Therefore, it is 
necessary to identify novel biomarkers for predicting 
LUAD patient survival and response to ICI therapy.

A growing body of evidence has demonstrated the 
importance of the tumor microenvironment (TME) in 
oncogenesis and tumors [8]. The TME is a complex network 
composed of tumor cells, immune cells, mesenchymal 
stem cells, fibroblast cells, endothelial cells, inflammatory 
mediators, and extracellular matrix [9]. The interactions 
between tumor cells and their surrounding supporting 
cells contribute to the malignant biological behaviors 
of cancer, such as unlimited proliferation, resistance 
to apoptosis, and evasion of immune surveillance [10]. 
Therefore, the TME significantly affects the therapeutic 
response to and clinical outcomes of patients with 
cancer. The major non-tumor components of the TME, 
tumor-infiltrating immune cells and stromal cells have 
been proposed to be valuable for the diagnostic and 
prognostic assessment of patients with tumors [11, 12]. The 
development of a comprehensive model of the TME based 
on immune and stromal signature genes may contribute 
to the prognostic evaluation of LUAD patients and predict 
the efficacy of immunotherapy. With advancements 
in sequencing techniques, bioinformatics tools such as 
Estimation of STromal and Immune cells in MAlignant 
Tumor tissues using Expression data (ESTIMATE) and 
CIBERSORT, make it feasible to estimate the distribution 
of immune and stromal cells in the TME by analyzing 
specific gene expression signatures of immune and stromal 
cells [13]. This algorithm has been successfully applied to 
quantitative analysis of the TME in various tumors and 
the identification of immune and stromal genes involved 
in the TME, and its effectiveness has been proven [14]. 

To date, several predictive models have been 
constructed for LUAD prognosis stratification, mainly 
focusing on immune-related genes or immune cells [15]. 
However, few studies have investigated the influence of 
TME on LUAD patient survival outcomes and response 
to immunotherapy, specifically based on immune and 
stromal components. To fill this knowledge gap, we aimed 
to develop a TME prognostic model based on immune 
and stromal genes to predict the survival outcomes and 
immune responses. In the present study, we systematically 
investigated the expression details and clinical significance 
of immune and stromal genes in the TME of LUAD and 
developed a novel TME-related prognostic model. In 
addition, we validated this model using independent 
datasets and analyzed its potential prognostic mechanism 
and association with immunotherapy responses. Our 
findings provide promising biomarkers for the prognostic 

stratification and selection of patients responsive to 
ICIs, which would facilitate accurate management and 
appropriate personalized therapies for patients with 
LUAD.

Materials and methods

Data source and preprocessing
The gene expression profiles of 594 LUAD case were 

downloaded from the TCGA database (https://portal.
gdc.cancer.gov/), along with their corresponding clinical 
and survival data. Datasets GSE26939, GSE37745, and 
GSE29016, which contained microarray expression 
data and clinical information of LUAD patients, were 
downloaded from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/). In our 
study, data from TCGA were used as the training cohort, 
whereas the three GEO datasets were used as validation 
cohorts. 

Generation of the immune score  
and stromal score

ESTIMATE is an algorithm for estimating the 
infiltration of immune and stromal cells in tumor samples 
by analyzing the specific gene expression signatures 
of immune and stromal cells. Here, we calculated the 
immune and stromal scores to predict the proportion of 
immune and stromal components in each sample using 
the ESTIMATE algorithm with the aid of the R software 
estimate package.

Identification of differentially expressed 
genes related to the TME and 
functional enrichment analysis

All patients in the training cohort were divided into 
high and low immune/stromal score groups according 
to the median immune and stromal scores, respectively. 
Kaplan–Meier analysis was conducted to compare the 
survival difference between the two groups, and the 
p-value of the log-rank test was calculated. The limma 
package was used to identify differentially expressed 
genes (DEGs) between the high and low immune/
stromal score groups with a fold change (FC) =1 and false 
discovery rate (FDR) < 0.05. DEGs between the high 
and low immune score groups were defined as immune 
DEGs, whereas the DEGs between the high and low 
stromal score groups were defined as stromal DEGs. 
Finally, the intersecting genes between the immune and 
stromal DEGs were considered for subsequent analysis. 
Heatmaps of DEGs were generated to show expression 
differences using the heatmap package heatmap. Gene 
Ontology (GO) enrichment and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway enrichment 
analyses of intersecting DEGs were performed using the 
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clusterProfiler, enrichplot, and ggplot2 packages. Only 
terms with p- and q-values of < 0.05 were considered 
significantly enriched. Moreover, we downloaded a list 
of immune-related genes from the Immunology Database 
and Analysis Portal (Immport) to select immune-related 
DEGs among these DEGs using the VennDiagram 
package.

Construction and evaluation of the TME-related 
prognostic model in the training set

Univariate Cox and Kaplan–Meier analyses were 
performed in the training cohort to identify significant 
prognostic genes among the immune-related DEGs. 
A P value < 0.05 in the log-rank test was considered 
significant. Multivariate Cox regression analysis was 
performed to obtain the respective coefficients (βi) 
of each gene. Finally, the TME prognostic model was 
constructed on the basis of the key prognostic genes, and 
the risk score of each patient was calculated on the basis 
of the expression level of each key prognostic gene and its 
regression coefficient.

Kaplan-Meier and receiver operating characteristic 
(ROC) analyses were used to assess the accuracy of the 
model in predicting clinical outcomes. Univariate and 
multivariate Cox regression analyses were performed 
to evaluate the prognostic value of the model and other 
common clinical factors such as age, sex, stage, and TNM 
stage.

Validation of the TME-related prognostic  
model in the testing set

The feasibility and stability of the TME-related 
prognostic model were confirmed using the GEO database 
model. Patients in the three testing datasets were divided 
into the high- and low-risk groups according to the 
formula of risk score derived from the training dataset 
using the same methods as above. Kaplan–Meier survival 
analysis and ROC curve analysis were used to evaluate 
the performance of the six-gene prognostic model in 
predicting the outcomes of patients with LUAD.  

Evaluation of immune status between  
the high-risk and low-risk groups stratified  
by prognostic model

To explore the potential mechanism of the prognostic 
effects of the model, we analyzed the immune status and 
pathway enrichment of high-risk and low-risk samples. 
First, we quantified the enrichment levels of the 29 
immune signatures in each LUAD sample using single-
sample gene set enrichment analysis (ssGSEA) score. 
Based on the ssGSEA score, we performed a hierarchical 
clustering analysis to compare immune activities between 
the high-risk and low-risk samples. CIBERSORT is an 
algorithm used for estimating the proportion of immune 

cell subsets through cell type identification by estimating 
the relative subsets of RNA transcripts. In this study, we 
used the CIBERSORT algorithm to construct 21 types of 
immune cell profiles in LUAD samples and compared the 
differences in immune cell subtypes between the high- 
and low-risk groups. KEGG enrichment analysis was 
performed to analyze the functions or pathways that were 
upregulated in the two groups. Finally, we compared the 
mRNA levels of immune checkpoints and their ligands 
and the expression of HLA genes in the high- and low-
risk groups.

Comprehensive analysis of prognostic  
hub genes in the model

To reveal the regulatory mechanisms of the prognostic 
hub genes in the TME, we systematically analyzed the 
genetic alterations and functional enrichment of these six 
genes. First, RNA expression and gene-encoding protein 
expression level alterations in LUAD compared with 
normal tissue were estimated by the Wilcoxon test and 
immunohistochemistry (IHC), respectively. IHC results 
for hub genes were obtained from the Human Protein 
Atlas (HPA) database. The String online database and 
Cytoscape software were used to construct a protein–
protein interaction (PPI) network between the molecules. 
We then analyzed the pathways of hub genes by gene set 
enrichment analysis (GSEA), using the gene expression 
level as the phenotype. The curated KEGG gene set was 
downloaded from the Molecular Signature Database, 
and FDR < 0.05 was considered significant. Finally, we 
evaluated the correlation between hub gene expression 
and immune cell infiltration in LUAD using TIMER. 

Results

Immune scores and stromal scores  
were correlated with survival outcomes

A total of 510 LUAD cases from TCGA were used as 
the training cohort, and three GEO datasets were used 
as the validation cohorts. The clinical information for 
all cohorts is summarized in Table 1. We calculated the 
immune and stromal scores of each LUAD patient in 
TCGA and divided them into high and low immune/
stromal score groups on the basis of the median value. 
Kaplan-Meier survival analysis showed that patients with 
high immune and stromal scores showed better survival 
outcomes than those with low scores, with log-rank tests 
of P = 0.01 and 0.026, respectively (Fig. 1a, 1b).

Identification of DEGs based on immune score 
and stromal score

The heatmap showed that genes in the high score group 
had lower expression levels than those in the low score 
group, both for immune and stromal scores (Figure 1C, 
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D). A total of 776 immune DEGs were obtained from the 
comparison of immune scores (samples with high scores 
vs. low scores), of which 613 genes were upregulated 
and 163 genes were downregulated. Similarly, 792 
stromal DEGs were obtained from a comparison of the 
stromal scores, consisting of 678 upregulated genes and 
114 downregulated genes. Moreover, Venn diagrams 
showed that 297 DEGs were commonly upregulated in 
the high-score groups, and 66 DEGs were commonly 
downregulated (Fig. 1e, 1f). These notable DEGs were 
potentially determinant factors of TME status.

GO and KEGG enrichment analysis
Results of the GO enrichment analysis showed that 

these DEGs were mainly involved in immune-related 
functions, such as T-cell activation and lymphocyte 
proliferation (Fig. 2a, 2c). KEGG analysis also revealed 
enrichment of the T cell receptor signaling pathway, 
chemokine signaling pathway, and hematopoietic cell 
lineage (Fig. 2b, 2d). Since the DEGs were correlated with 

immune functions or pathways in LUAD, we further 
identified the top 89 immune-related DEGs from the 
Immport database for subsequent analysis (Fig. 3a). 

Construction of the TME-related 
prognostic model

Univariate Cox and Kaplan–Meier analyses were 
conducted to determine the significant prognostic genes 
among the 89 immune-related DEGs. A total of 24 genes 
were identified as significant in the Cox regression analysis 
(Fig. 3b), of which 6 genes were also significant in the 
Kaplan-Meier analysis. Among them, higher expression 
levels of BTK, CD28, PIK3CG, TLR4, and VEGFD 
correlated positively with poor survival outcomes, 
whereas INHA expression correlated negatively with 
prognosis (Fig. 3c). Then, the six prognostic genes were 
subjected to multivariate Cox regression analysis, and 
the risk coefficient of each gene was calculated (Table 2). 
The TME-related prognostic model was constructed as 
follows: risk score = (–0.111958) × EXPBTK + 0.279096 × 

Table  1  Clinical characteristics of LUAD patients included in this study

Features
Number of patients (%)

Training cohort
TCGA (n = 510)

Testing cohort1
GSE26939 (n = 116)

Testing cohort2
GSE37745 (n = 196)

Testing cohort3
GSE29016 (n = 72)

Age (years)
≤ 65 235 (46.08) 59 (50.86) 102 (52.04) 33 (45.83)
> 65 275 (53.92) 57 (49.14)   94 (47.96) 39 (54.17)

Gender
Female 271 (53.14) 63 (54.31)   89 (45.41) 41 (56.94)
Male 239 (46.86) 53 (45.69) 107 (54.59) 31 (43.06)

AJCC stage
Stage I 272 (53.33) 62 (53.45) 130 (66.33) 46 (63.89)
Stage II 124 (24.31) 19 (16.38) 35 (17.85) 15 (20.83)
Stage III 85 (16.67) 19 (16.38) 27 (13.78) 5 (6.95)
Stage IV 22 (4.31) 2 (1.72) 4 (2.04) 0 (0)
Unknown 7 (1.38) 14 (12.07) 0 (0) 6 (8.33)

T stage 
T1 168 (32.94) – – 25 (34.72)
T2 276 (54.12) – – 36 (0.50)
T3 47 (9.21) – – 7 (9.72)
T4 19 (3.73) – – 4 (5.56)

N stage 
N0 335 (65.69) – – 65 (90.28)
N1–3 175(34.31) – – 7 (9.72)

M stage
M0 349 (68.43) – – 68 (94.44)
M1 22 (4.31) – – 0 (0)

  Unknown 139 (27.26) – – 4 (5.56)
Survival status

Alive 0 184 (36.08) 50 (43.10)  51 (26.02) 22 (30.56)
Dead 1 326 (63.92) 66 (56.90) 145 (73.98) 50 (69.44)

AJCC, American Joint Committee on Cancer
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EXPCD28 + 0.008079 × EXPINHA + (–0.357674) × EXPPIK3CG 

+0.099561 × EXPTLR4 + (–0.102261) × EXPVEGFD. 

Prognostic value of the TME-related model in 
the training and validation cohorts

We calculated the risk score for each patient in the 
training cohort (n = 510) and divided them into the high- 
and low-risk groups according to the median cutoff value 
(cutoff value: –0.261). The Kaplan-Meier plot showed 
that patients in the high-risk group had worse survival 
outcomes than those in the low-risk group (Fig. 4a). The 
ROC curve of the 5-year survival prediction was drawn 
to assess the predictive accuracy, with an area under 

the curve of 0.688 (Fig. 4b). Additionally, the risk curve 
indicated that the high-risk group had a higher mortality 
and worse prognosis than the low-risk group (Fig. 4c, 
4d). The prognostic value of our model in patients with 
LUAD was further evaluated using other common 
prognostic factors. Although univariate Cox analysis 
indicated that the pathological stage and risk score had 
prognostic effects, only the risk score could be used as an 
independent prognostic factor (P < 0.001; Fig. 4e, 4f).

Consistent with the results in the training dataset, 
the six-gene model stratified the samples of the three 
GEO testing datasets into high-risk and low-risk 
groups. Patients with low-risk scores had better survival 

Fig. 1  Identification of differential expressed genes(DEGs). (a) Kaplan-Meier survival curve of high and low immune score groups; (b) Kaplan-Meier 
survival analysis for high and low stromal score groups; (c) Heatmap for DEGs generated by comparison of gene expression profiles in high and low 
immune score groups; (d) Heatmap for DEGs in high and low stromal score groups; (e, f) Venn diagrams showed the common up-regulated and down-
regulated DEGs shared by immune and stromal score groups 
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Fig. 2  Functional enrichment analysis. (a) GO enrichment analysis of 363 DEGs; (b) KEGG enrichment analysis of DEGs; (c)Circle plot show the 
DEGs involved in top 5 enriched terms of GO analysis; (d)Circle plot show the DEGs involved in top 5 enriched terms of KEGG analysis 
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outcomes than those in the high-risk group (P < 0.05; Fig. 
5a–5c). The areas under the ROC curves for predicting 

5-year survival in the three testing datasets were 0.679, 
0.666, and 0.732 (Fig. 5d–5f). These results suggest that 

Fig. 3  Univariate Cox and Kaplan Meier analysis for prognostic genes screening. (a) Identification of immune-related DEGs; (b) The forest plot of 
24 prognostic immune-related DEGs screened out by Univariate Cox regression analysis with P < 0.005; (c) Survival curves of the 6 prognostic genes 
extracted by the Kaplan-Meier analysis. Patients were labeled with high expression or low expression according to the median expression level of the 
6 genes 
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the TME-related prognostic model is robust in predicting 
the survival outcomes of patients with LUAD.

Evaluation of the immune status between  
low-risk and high-risk groups

The strong stratification power of the TME-related 
model in predicting the survival of patients with LUAD led 
us to explore the difference in functional characteristics 
between the two risk groups. The ssGSEA score of the 

Fig. 4  Construction and validation of the TME-related prognostic model in the training cohort. (a) Kaplan-Meier survival curve of low- and high-risk 
groups stratified by the TME-related prognostic model; (b) The ROC analysis of the TCGA dataset for survival prediction by the TME prognostic model; 
(c) The distribution of risk score and survival time in high- and low-risk groups; (d) Heatmap of the six prognostic genes; (e)The Univariate Cox analysis 
evaluating the prognostic effect of the model and common clinical factors; (f) Multivariate Cox analysis evaluating independent predictive ability of our 
model for overall survival
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29 immune signatures was used to evaluate the immune 
status of the two groups. The heatmap showed that the 
low-risk group had a higher immune activity than the 
high-risk group (Fig. 6a). Consistent with the ssGSEA 
results, immune and stromal scores in the low-risk group 
were significantly higher, and the tumor purity of the 
low-risk group was significantly lower (Fig. 6b–6d). This 
finding indicated that more immune and stromal cells 
infiltrated the TME of low-risk samples, whereas more 
tumor cells were present in high-risk samples. Moreover, 
we identified the immune cell subtypes in the two groups. 
The low-risk group had a significantly higher proportion 
of memory B cells, memory CD4+ T cells, monocytes, 

and dendritic cells than the high-risk group, whereas 
the high-risk group had a markedly higher proportion of 
M0 macrophages (Fig. 6e). Taken together, these results 
suggest that patients with low-risk scores show elevated 
antitumor immune activity, leading to more favorable 
clinical outcomes.

Potential mechanisms of the prognostic effects 
of the TME-related model

GSEA was conducted to elucidate the specific 
regulatory mechanisms resulting in the differences in 
prognosis and immune status between the two risk 
cohorts. The results showed that the low-risk group was 

Fig. 5  Validation of the TME-related prognostic model in the testing cohort. Kaplan-Meier survival curves showing overall survival outcomes of high- 
and low-risk groups in GSE37745 (a), GSE26939 (b) and GSE29016 (c). The ROC curves for judging the predictive accuracy of the model in GSE37745 
(d), GSE26939 (e) and GSE29016 (f)

Table  2  Genes in the TME-related prognostic model
Gene symbol Gene description Coefficient
BTK Bruton tyrosine kinase –0.111958
CD28 CD28 molecule 0.279096
INHA Inhibition alpha subunit 0.008079
PIK3CG Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma –0.357674
TLR4 Toll like receptor 4 0.099561
VEGFD Vascular endothelial growth factor D –0.102261
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enriched not only in immunoregulation and immune cell 
activation, but also in many cancer-associated pathways, 
such as JAK-STAT signaling, cell adhesion molecules, 
and transendothelial migration (Fig. 7a). In contrast, the 
high-risk group was impoverished in immune signatures 
but enriched in metabolic signaling. Notably, most HLA 
genes showed significantly higher expression in the low-
risk group than in the high-risk group, indicating that 

local immune regulation and immunogenicity were more 
active in the low-risk group (Fig. 7b). 

Relationship between the TME-related model 
and immunotherapy response

In recent years, immune checkpoint proteins such 
as cytotoxic T lymphocyte antigen 4 (CTLA-4) or the 
programmed cell death ligand 1/protein 1 pathway 

Fig. 6  Evaluation of immune status and immune cell infiltration levels between high- and low- risk groups. (a) The heatmap of the overall immune status 
of high- and low-risk groups in TCGA database, showing greater heterogeneity between the two groups; (b–d) The violin plots showed the difference 
in immune score, stromal score and tumor purity between low- and high-risk groups. ***P < 0.001; **P < 0.01; *P < 0.05; (e) The violin plot shows the 
difference in the proportion of 21 kinds of immune cells between high- and low-risk groups, and the Wilcox rank-sum was used for the significance test 
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(PD-L1/PD-1) have been used as crucial targets 
for immunotherapy in LUAD [16]. We explored the 
relationship between the model and immunotherapy 
response by analyzing the expression of common 
immune checkpoints in the high- and low-risk groups 
and found that the expression of CTLA-4, PD-1, PD-L1, 
PD-L2, TIM-3, and LAG-3 in the low-risk group was 
significantly higher than that in the high-risk group (all P 
< 0.001; Fig. 7c). This suggests that patients with low-risk 
scores might respond better to ICI treatment than those 
with high-risk scores because the expression of immune 
checkpoint molecules tends to be positively associated 
with immunotherapeutic responsiveness. Therefore, the 
construction of a risk cohort using our model could be 
a good stratification method for patients with LUAD 
regarding whether to conduct immunotherapy.

The mechanism of action of prognostic hub 
genes in the TME

To further analyze the potential function of the hub 
genes, our results were verified using the HPA and 
TIMER databases. We found that CD28 and INHA had 
significantly higher expression levels in LUAD samples 
than in normal lung samples, whereas BTK, PIK3CG, 
TLR4, and VEGFD had lower expression levels in 
tumor tissues (Fig. 8a). In terms of protein levels, the 
protein expression patterns of BTK, INHA, PIK3CG, 
TLR4, and VEGFD were consistent with their RNA-seq 

expression alterations (Fig. 8b). However, CD28 showed 
no significant difference. The PPI network also showed 
extensive interactions among BTK, CD28, PIK3CG, and 
TLR4.

GSEA suggested that BTK, CD28, PIK3CG, TLR4, 
and VEGFD were enriched in the same pathways. High 
expression of these five genes was mainly correlated with 
immune-related activities, such as antigen processing and 
presentation, the chemokine signaling pathway, and the 
JAK-STAT signaling pathway, whereas low expression 
of these genes was associated with metabolic pathways 
(Fig. 9a, 9b). In contrast, high expression of INHA was 
correlated with metabolic pathways, and low expression 
was involved in the activation of immune pathways 
(Fig. 9c, 9d). More importantly, the expression of BTK, 
CD28, PIK3CG, TLR4, and VEGFD positively correlated 
with the infiltration of CD4+ T cells, CD8+ T cells, B 
cells, neutrophils, dendritic cells, and macrophages (Fig. 
10). However, INHA was negatively correlated with 
infiltration of the six immune cells. Collectively, these 
results suggest that these six hub genes affect the immune 
activity of the TME.

Discussion 

In this study, we aimed to identify a novel TME-
related prognostic model for LUAD. We embarked on 
TME-related DEGs generated by comparing the immune 

Fig. 7  Functional mechanisms of the TME-related model and association with immune checkpoint molecules. (a) KEGG pathways enriched in high- 
and low-risk samples; (b) The expression profiles of HLA genes of low- and high-risk groups. ***P < 0.001; **P < 0.01; *P < 0.05; (c) Comparison of 
expression levels of CTLA-4, PD-1,PD-L1, PD-L2,TIM-3 and LAG-3 between high-risk and low-risk groups (Wilcox rank-sum test) 
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and stromal scores in LUAD samples. Subsequently, a 
list of TME-related genes that contribute to the survival 
outcomes of patients with LUAD was extracted. Finally, 
a six-gene prognostic model, based on prognostic TME-
related genes, was constructed. Both immune and stromal 
genes in LUAD samples were analyzed to better reflect 
the complete TME status. Furthermore, we validated 
its prognostic value in three testing sets from the GEO 
datasets. Kaplan-Meier and ROC analyses revealed the 
strong predictive ability of our model for LUAD prognosis 
in both the training and testing sets. Univariate and 
multivariate Cox analyses confirmed the independent 
prognostic value of the six-gene model. Accordingly, 
unlike those developed previously, the TME-related 
prognostic model developed herein could reflect the 
tumor immune microenvironment status and predict 
the prognosis of LAUD more accurately. Moreover, an 
enhanced understanding of the model and related hub 

genes would help to elucidate regulatory mechanisms of 
the TME and develop new treatment strategies.

Experimental and clinical studies have demonstrated 
that the immune and stromal components of the TME 
play significant roles in lung cancer development and 
progression [17]. The immune and stromal cells infiltrating 
the TME are composed of different cell types. As the most 
important immune cells in the TME, tumor-infiltrating 
T lymphocytes execute key effector cytotoxic functions 
and mediate responses to ICIs [18]. Tumor-associated 
macrophages are another class of immune cells that interact 
with lung cancer cells. Macrophage-tumor cell interactions 
lead to the release of pro-inflammatory cytokines, 
chemokines, and growth factors, which in turn recruit 
additional inflammatory cells to the microenvironment 

[19]. Other immune cells in the TME include B cells, NK 
cells, dendritic cells (DCs), T regulatory cells (Tregs), and 
B regulatory cells (Bregs). Cancer-associated fibroblasts 

Fig. 8  Expression profiles of the six hub genes in the model. (a) The expression levels of the six prognostic genes in LUAD samples and normal lung 
samples in the TCGA database (BTK, CD28, INHA, PIK3CG, TLR4 and VEGFD). Wilcox test was used to calculate the significance level between the 
two groups; (b) The immunohistochemistry results reflecting the gene-encoding protein levels of the six hub genes in LUAD and normal lung tissues 
from the HPA database 
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are the most abundant stromal cells in the TME and play 
critical roles in the inflammatory response and immune 
suppression of tumors [20]. Fibroblasts promote tumor 

progression via multiple pathways, including regulation 
of the extracellular matrix, production of growth factors 
or cytokines, and promotion of angiogenesis, whereas 

Fig. 9  The GSEA enrichment analysis of the hub prognostic genes. (a) The enrichment pathways of high expression of BTK, CD28, PIK3CG, TLR4 
and VEGFD. Each line representing one particular pathway with unique color, only pathways with p and q < 0.05 were considered significant. And only 
several leading gene sets were displayed in the plot; (b) The enrichment pathways of low expression of the five genes; (c) Enrichment pathways of high 
INHA expression; (d) Enrichment pathways of the low INHA expression 
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some fibroblast subtypes also show antitumor activities 
by secreting immunosuppressive cytokines [21]. 

To determine the distinct gene expression profiles 

in the TME with respect to immune and stromal 
components, DEGs based on immune and stromal scores 
were screened. Six prognostic hub genes among these 

Fig. 10  Correlation between hub prognostic genes and immune cell infiltration. (a–f) The gene expression levels against tumor purity are displayed 
on the left-most panel
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DEGs were identified (survival positive correlation: 
INHA; negative correlation: BTK, CD28, PIK3CG, TLR4, 
and VEGFD). Interestingly, functional analysis showed 
that BTK, CD28, PIK3CG, TLR4, and VEGFD could 
promote immune infiltration, while INHA inhibited 
immune cell infiltration. These results suggest that the 
six hub genes participate in the immune regulation of 
the TME and affect the prognosis of patients with LUAD, 
which might be potential immune prognostic markers 
and therapeutic targets for LUAD.   

Among these six genes, Bruton tyrosine kinase (BTK) is 
a member of the Tec kinase family. As a key component of 
the B-cell antigen receptor signaling pathway, BTK plays 
a vital role in B lymphocyte development, differentiation, 
and signaling [22]. Ibrutinib is a small-molecule irreversible 
inhibitor of BTK that has been approved for the treatment 
of hematological malignancies and some solid tumors 
owing to its ability to inhibit tumor growth by modifying 
the tumor microenvironment and its potential synergistic 
activity with ICIs [23, 24]. CD28 is a key T-cell costimulatory 
molecule that binds to B7 molecules, which are involved 
in the regulation of T cell proliferation and activation, 
along with cytokine production [25]. Previous studies 
have demonstrated that CD28 can predict the response 
to anti-PD-1 therapy in patients with lung cancer [26]. 
PIK3CG encodes the PI3Kγ enzyme, which can activate 
the signaling molecule Akt and modulate various cell 
functions such as cell proliferation, migration, and 
adhesion [27]. Novel PI3K inhibitors are important for the 
treatment of hematologic malignancies [28]. The protein 
encoded by TLR4 is a member of the toll-like receptor 
family. Studies have shown that TLR4 is highly expressed 
in immune cells, such as monocytes and lymphocytes, 
but is expressed at low levels in epithelial, endothelial, 
and cancer cells. Thus, TLR4 agonists have been widely 
explored as potential immunotherapeutic agents for the 
treatment of cancer [29]. VEGFD belongs to the vascular 
endothelial growth factor family and can induce both 
angiogenesis and lymphangiogenesis [30]. Clinical studies 
have shown that low expression of VEGFD is a predictor 
of greater survival benefits from bevacizumab treatment 
in patients with CRC [31]. INHA encodes a member of the 
transforming growth factor-beta (TGF-beta) superfamily 
of proteins. However, its function in lung cancer remains 
unknown. Our results suggest that high expression of 
INHA is associated with a poor prognosis of LUAD. A 
possible mechanism might be that INHA is involved in 
vascularization and tumor metastasis, leading to a poor 
prognosis [32]. Further studies are required to clarify the 
role of these hub genes in the TME in the initiation and 
development of LUAD.

Finally, a TME-related prognostic model was 
developed using the six hub immune genes for survival 
prediction. The low-risk group showed higher expression 

of HLA genes. HLA-related genes play a significant 
role in immune regulation, and their expression is 
advantageous for immunotherapy efficacy [33]. Our results 
showed elevated antitumor immune activity in the low-
risk group, which could explain why the low-risk group 
had more favorable clinical outcomes than the high-risk 
group. In addition to survival prediction, this TME-related 
signature was also a predictor of patient response to ICI 
treatment. To date, many biomarkers have been verified 
to indicate the efficacy of ICI treatment, including TMB, 
PD-L1 expression level, neoantigens, and gut microbiota 
[34]. Generally, most biomarkers reflect the status of the 
tumor immune microenvironment in a certain aspect. 
Thus, a prognostic model based on the TME may aid 
in the stratification of patients with LUAD to identify 
those responsive to immunotherapy. It is possible that 
patients with low-risk scores are more sensitive to 
immunotherapy than those with high-risk scores, since 
immune checkpoint molecules are more highly expressed 
in low-risk groups, and the increased levels of immune 
checkpoints indirectly indicate pre-existing T cell 
activation in the low-risk group.

This study has some limitations. The six-gene model 
was derived from retrospective data, and more prospective 
data are needed to validate our results. Second, this study 
lacked basic experiments to validate the function of the 
six hub genes and their association with immune cell 
infiltration. Third, patients receiving immunotherapy 
were not included in this study; therefore, the predictive 
ability of the model for immunotherapy response was 
evaluated indirectly.  

Conclusions
In conclusion, we constructed a TME-related 

prognostic model to predict LUAD patient survival 
outcomes and responses to immunotherapy. Patients with 
low risk scores had better prognoses and were expected to 
benefit from ICI treatment. This model might be valuable 
for prognostic management and patient selection before 
immunotherapy and deserves further validation. A 
significant association was observed between the hub 
genes and patient prognosis and immune infiltration, 
providing novel insights for the development of new 
treatment strategies.
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