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Affecting over one million people globally, colorectal 
cancer (CRC) is among the top three cancers diagnosed 
most frequently in men and women [1]. Although numerous 
novel technologies and strategies for CRC diagnosis and 
treatment have been developed, approximately 10% of 
cancer-related deaths are still caused by CRC, and the 
overall survival of patients with CRC remains poor [2]. 
Many prognostic factors, such as various gene mutations, 
non-coding RNAs, expression of PD-L1, the neutrophil-
to-lymphocyte ratio, and anatomic stage have been 
demonstrated to predict the survival of patients with CRC 
over the past decade [3–4]. However, only a few prognostic 
factors are effective because of the large extent of 

heterogeneity in CRC, which calls for identifying other 
prognostic factors.

Alterations in metabolic activities can help cells obtain 
and maintain malignant properties, facilitating tumor 
initiation, growth, or progression. Extensive studies 
on metabolic alterations in cancer cells began with the 
observation of the Warburg effect. These studies have 
highlighted that reprogrammed metabolism is a hallmark 
of cancer [5–6]. The exploration of cancer metabolism 
offers a new perspective on tumorigenesis. Furthermore, 
metabolism-associated genes have been shown to have 
prognostic value in various tumors. For example, a 
mutation in the gene coding the metabolic enzyme 
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Abstract Objective  In this study, our goal was to explore the role of metabolism-associated genes in colorectal 
cancer (CRC) and construct a prognostic model for patients with CRC.
Methods  Differential expression analysis was conducted using RNA-sequencing data from The Cancer 
Genome Atlas (TCGA) dataset. Enrichment analyses were performed to determine the function of 
dysregulated metabolism-associated genes. The protein-protein interaction (PPI) network, Kaplan-Meier 
curves, and stepwise Cox regression analyses identified key metabolism-associated genes. A prognostic 
model was constructed using LASSO Cox regression analysis and visualized as a nomogram. Survival 
analyses were conducted in the TCGA and Expression Omnibus (GEO) cohorts to demonstrate the 
predictive ability of the model.
Results  A total of 332 differentially expressed metabolism-associated genes in CRC were screened 
from the TCGA cohort. Differentially expressed metabolism-associated genes mainly participate in 
the metabolism of nucleoside phosphate, ribose phosphate, lipids, and fatty acids. A PPI network was 
constructed out of 328 key genes. A prognostic model was established based on five prognostic genes 
(ALAD, CHDH, ISYNA1, NAT1, and P4HA1) and was demonstrated to predict survival in the TCGA and 
GEO cohorts accurately.
Conclusion  The metabolism-associated prognostic model can predict the survival of patients with 
CRC. Our work supplements previous work focusing on determining prognostic factors of CRC and lays a 
foundation for further mechanistic exploration.
Key words:  colorectal cancer (CRC); prognostic; metabolism; RNA-seq; The Cancer Genome Atlas 
(TCGA)
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isocitrate dehydrogenase (IDH) may indicate a favorable 
prognosis for gliomas [7]. The prognostic value of a signature 
reflecting glucose metabolism has been validated in 
patients with breast cancer through integrative analysis 

[8]. High expression levels of genes involved in glycolysis 
may indicate shorter median survival in patients with 
pancreatic cancer, but the high expression levels of genes 
involved in cholesterol synthesis may have the opposite 
effect [9].

Several studies have shown that metabolism is closely 
related to colorectal oncogenesis [10–12]. Furthermore, 
other studies have also identified a few prognostic 
metabolism-associated genes in colorectal cancer [13]. 
Nevertheless, since various metabolic alterations, such 
as the biosynthesis and metabolism of glucose, lipids, 
amino acids, and triphosadenine, play a role in tumor 
initiation and progression, the metabolism-associated 
genes involving in prognosis of CRC patients are far from 
fully explored. In this study, we analyzed CRC RNA-
sequencing data from The Cancer Genome Atlas (TCGA) 
database from different perspectives and discovered five 
metabolism-associated genes that are independently 
related to survival in CRC patients. Additionally, a 
prognostic model was generated, and its prognostic value 
was confirmed in GSE39582 and TCGA.

Materials and methods

Data collection and processing
RNA-sequencing data files and corresponding clinical 

and pathological characteristics of patients with CRC 
were collected from the TCGA database, including 
a total of 44 normal samples and 568 tumor samples. 
Microarray data (GSE39582) with 585 samples from 
the Gene Expression Omnibus (GEO) database were 
downloaded as the validation cohort. Patients who were 
followed up for less than a month were excluded. We 
obtained metabolism-associated genes from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
using the Gene Set Enrichment Analysis (GSEA) website 
(https://www.gsea-msigdb.org). The R package “Limma” 
was used to conduct differential gene expression analysis 
(version 3.6.2). Metabolism-associated genes that met 
the “adjusted P-value < 0.05 and |log fold change| > 0.5” 
thresholds were selected for further analysis. Volcano 
plots and heatmaps were generated to visualize the 
differentially expressed genes (DEGs).

Gene Ontology (GO) and KEGG enrichment 
analyses of DEGs	

To gain insight into the possible biological functions of 
the differentially expressed metabolism-associated genes, 
the R package “clusterProfiler” was used to perform GO 
enrichment and KEGG pathway analyses with a threshold 

of both a P- and Q-value < 0.05.

Protein-protein interaction (PPI) network 
construction

Because proteins mediate most of the biological 
functions, a PPI network was constructed using STRING 
(http://string-db.org) to elucidate protein interactions. 
Cytoscape, a visualization tool, was used to construct 
the PPI network. Proteins that did not interact with 
any other proteins were considered relatively useless 
and were removed from the network. The metabolism-
associated genes participating in the PPI network were 
identified as key genes.

Identification and validation of prognostic 
genes

The log-rank test and univariate Cox regression 
analysis were conducted to identify candidate prognostic 
genes from the key genes screened from the PPI network. 
Multivariate Cox regression analysis was also performed 
to determine whether the candidate prognostic genes 
could be independent prognostic indicators. Genes with a 
P-value < 0.05 in all of the above analyses were ultimately 
considered prognostic genes. Differential expression 
of these five genes was confirmed from different 
perspectives. Unpaired samples were discarded, and 
differential expression analysis was performed between 
44 paired tumor and peritumoral tissues for these five 
genes in the TCGA cohort to avoid the effect caused by 
the large difference between the number of tumor and 
normal samples. The prognostic genes were also verified 
in GSE39582 using GraphPad Prism 7.0 software.

Construction and analysis of 
the prognostic model

The prognostic metabolism-associated genes identified 
from the above analyses were analyzed using LASSO 
Cox regression analysis with the R package “glmnet” to 
generate the prognostic model. The established model 
was presented as a formula, and the risk score of each 
sample was calculated using regression coefficients and 
mRNA expression levels of the prognostic genes. Patients 
were assigned to the high- and low-risk groups, with 
the median risk score used as the classification criterion. 
Kaplan-Meier survival curves were drawn to compare 
the outcomes of the high- and low-risk groups. The 
heat map, survival state diagram, and risk curve were 
generated according to the risk score. Then, univariate 
and multivariate Cox proportional regression analyses 
were conducted to determine the role of the risk score 
in outcome prediction. The “survminer” and “survival” 
R packages were utilized to perform the above survival 
analyses. To evaluate the ability of the model to predict 
survival, receiver operating characteristic (ROC) curves 
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were created using the R package ‘‘survival ROC”. A 
nomogram was then generated based on the prognostic 
genes to predict patient survival using the “rms package” 
in the R software, and calibration curves were used to 
assess the deviation of predicted from actual survival.

Results

Identification of differentially expressed 
metabolism-associated genes

The workflow of this study is shown in Fig. 1. The 
RNA-sequencing data collected from TCGA included 
568 tumor samples and 44 adjacent normal samples. 
After extracting the expression values of 961 metabolism-
associated genes, we identified 332 DEGs that contained 
160 downregulated genes and 172 upregulated genes (Fig. 
2).

Functions of differentially expressed 
metabolism-associated genes and the PPI 
network

GO function and KEGG pathway enrichment analyses 
were performed on dysregulated genes to investigate 
their biological functions and lay the foundation for 
further mechanistic exploration. Bar and circle plots 
were also generated. The top 30 enriched GO terms and 
pathways are presented. The upregulated genes were 
mainly related to the biosynthesis and metabolism of 
nucleoside phosphate, ribose phosphate, and purine (Fig. 
3). The downregulated genes were mostly involved in the 
metabolism of various lipids and acids (Fig. 4). Because 
the interactions between proteins are essential in most 
biological functions, a PPI network was constructed to 
determine the significant metaboslism-associated genes 
in biological processes. The PPI network comprised 328 

nodes and 3574 edges after removing disconnected nodes 
(Fig. 5). The mean node degree of the network was 22, 
and the maximum node degree of protein nodes in the 
network was 85.

Fig. 1  Workflow for this study

Fig. 2  Analyses of differently expressed genes. (a) The volcano plot of differentially expressed metabolism-associated genes between colorectal 
cancer and normal tissues in the TCGA database. A total of 160 downregulated genes are displayed in green, and 172 upregulated genes are displayed 
in red. (b) Heat map of differentially expressed metabolism-associated genes between colorectal cancer and normal tissues in the TCGA database. 
TCGA = The Cancer Genome Atlas
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Identification and validation of prognostic 
metabolism-associated genes

Seventeen genes were acquired using the log-rank test 
and univariate Cox regression analysis (Fig. 6a). These 17 
genes could be significant prognostic factors. However, 
it is unknown whether their influence on survival is 

unaffected by other vital characteristics, such as age and 
stage. Therefore, multivariate Cox regression analysis was 
conducted, and we obtained five genes (ALAD, CHDH, 
ISYNA1, NAT1, and P4HA1) that independently affected 
overall survival (Fig. 6b). High expression of CHDH 
and NAT1 was observed to be associated with a lower 
risk of death with hazard ratios < 1 in both univariate 
and multivariate Cox analyses, whereas high expression 
of ALAD, ISYNA1, and P4HA1 had negative effect on 
survival. Thus, we hypothesized that CHDH and NAT1 
are tumor suppressor genes, whereas ALAD, P4HA1, and 
ISYNA1 are oncogenes.

The results of differential expression analysis 
performed between paired tumor and peritumoral tissues 
in the TCGA cohort for these five genes confirmed our 
initial findings (Fig. 7a–7e), demonstrating that the 
initial differential expression analysis was unaffected by 
differences in the total sample number between tumor 
and normal tissues. The expression patterns of these genes 
were verified using another database. In accordance with 
the TCGA results, the expression levels of CHDH, P4HA1, 
and ISYNA1 in the validation cohort GSE39582 were 
significantly elevated in colorectal carcinomas compared 
to peritumoral tissues, whereas the expression levels of 
ALAD and NAT1 were lower in tumor tissues (Fig. 7f–7j).

Construction and analysis of prognostic models
A LASSO Cox regression model consisting of regression 

coefficients and mRNA expression levels of prognostic 
genes was constructed. The following formula was used to 
calculate the risk scores: (–0.1025 × Exp CHDH) + (0.0242 
× Exp P4HA1) + (0.1748 × Exp ALAD) + (–0.3568 × Exp 
NAT1) + (0.0226 × Exp ISYNA1). Patients were assigned 

Fig. 6  Univariate Cox regression analysis and multivariate Cox regression analysis of key genes. (a) Seventeen candidate prognostic genes with 
a P-value < 0.05 in both the log-rank test and univariate Cox regression analysis. (b) Results of multivariate Cox regression analysis of 17 candidate 
prognostic genes. High-risk genes are shown in red, and low-risk genes are in green 

Fig. 5  PPI network analysis. Protein-protein interaction network of 
differentially expressed metabolism-associated genes. Green dots 
represent downregulated genes with a fold change of less than 0.5. Red 
dots represent upregulated genes with fold changes greater than 0.5. PPI: 
protein-protein interaction
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to the high- or low-risk groups, with the median risk 
score being the classification criterion. The difference 
in survival probability between these two groups was 
statistically significant in both the TCGA (P < 0.01; Fig. 
8a) and GEO cohorts (P < 0.01; Fig. 8b). Patients in the 
low-risk group were more likely to live longer. In the 
TCGA cohort, univariate (HR = 3.029, P < 0.01; Fig. 8c) 
and multivariate Cox regression analyses (HR = 2.485, P 
< 0.01; Fig. 8e) showed that the risk score was negatively 
associated with the overall survival of CRC patients, 
regardless of confounding factors, such as age, sex, and 
stage. For the GEO cohort, univariate Cox regression 

analysis suggested that the overall survival of patients 
with CRC was significantly related to the risk score (HR 
= 1.231, P = 0.026; Fig. 8d). However, multivariate Cox 
regression analysis did not yield the same results (HR = 
1.076, P = 0.439; Fig. 8f). The areas under the ROC curve 
were 0.744 and 0.569 for the TCGA cohort (Fig. 8g) and 
GEO cohorts, respectively (Fig. 8h), indicating that the 
prognostic model was powerful. The difference in the 
expression levels of the five prognostic genes between the 
high- and low-risk groups was not statistically significant 
in the TCGA (Fig. 9a) and GEO cohorts (Fig. 9b). Patients 
ranked by risk score in the TCGA (Fig. 9c) and GEO (Fig. 

Fig. 7  Validation of five prognostic genes in the TCGA and GEO databases. (a–e) Differential expression of five prognostic genes between paired tumor 
and normal tissues in the TCGA cohort. (f–j) Differential expression of five prognostic genes in the CRC samples and control samples in GSE39582, and 
gene expression underwent log2 transformation. GEO: Gene Expression Omnibus database; CRC: colorectal cancer 

Fig. 9  Risk analyses of the prognostic model. Expression of five prognostic genes in the high- and low-risk groups in the TCGA cohort (a) and GEO 
cohort (b). Patients ranked by risk scores in the TCGA cohort (c) and GEO cohort (d). Survival status of patients ranked by risk score in the TCGA cohort 
(e) and GEO cohort (f). TCGA: The Cancer Genome Atlas; GEO: Gene Expression Omnibus database
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Fig. 8  Construction and verification of the prognostic model. Kaplan-Meier survival curves of the high- and low-risk groups in the TCGA cohort (a) and 
GEO cohort (b). Univariate Cox regression analysis of risk score and clinicopathological variables in TCGA cohort (c) and GEO cohort (d). Multivariate 
Cox regression analysis of risk score and clinicopathological variables in the TCGA cohort (e) and GEO cohort (f). ROC curves of the risk score in the 
TCGA cohort (g) and GEO cohort (h). TCGA: The Cancer Genome Atlas; GEO: Gene Expression Omnibus database
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9d) cohorts are displayed. Surviving patients decreased 
with an increase in the risk score (Fig. 9e and 9f), 
consistent with the results of the Kaplan-Meier curve and 
stepwise Cox regression analyses. A nomogram based on 
the prognostic model was plotted to predict the survival 
of patients with CRC (Fig. 10a), and calibration curves 
showed that the predicted survival of the nomogram was 
consistent with actual survival (Fig. 10b and 10c).

Discussion

CRC accounts for a large porportion of gastrointestinal 
tumors and poses a huge threat to global health. The 
overall survival of patients with CRC depends on many 
risk factors. Recently, numerous prognostic biomarkers 
have been developed for CRC, but only a few of them 
have been applied clinically. Therefore, it is necessary 

to identify more potential prognostic factors. Cancer 
metabolism is an important segment of the malignant 
transition. The link between the gut microbiome and 
colon carcinogenesis may also be mediated by altered 
metabolism [14]. Numerous studies have confirmed the 
prognostic value of metabolism-associated genes in 
various tumors. Therefore, there is a need to explore 
the metabolism-associated genes that play a role in the 
outcome of patients with CRC.

In this study, using TCGA data, we conducted an 
integrative analysis to offer a well-rounded landscape of 
961 metabolism-associated genes in CRC. The possible 
mechanisms underlying oncogenesis were explored 
using functional enrichment and PPI network analyses. 
Additionally, we identified five prognostic metabolism-
associated genes (ALAD, CHDH, ISYNA1, NAT1, 
and P4HA1) through stepwise statistical analyses and 

Fig. 10  Nomogram and calibration curves of the prognostic model. (a) Nomogram based on five prognostic genes for predicting the 3-year and 5-year 
overall survival probability of patients with colorectal cancer. (b) A 3-year calibration plot of the nomogram. (c) A 5-year calibration plot of the nomogram
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constructed a prognostic model that performed well in 
the GEO dataset.

Functional enrichment analysis of differentially 
expressed metabolism-associated genes revealed that 
these genes are closely related to the biosynthesis and 
metabolism of nucleoside phosphate, ribose phosphate, 
DNA, and RNA polymerase, and the metabolism of lipids 
and acids. The involvement of nucleotide metabolism has 
been illustrated in senescence [15], which could determine 
cancer cell fate. There is increasing evidence that lipid 
metabolism often affects cancer cells in different ways [16–

19]. Cancer cells have an added demand for amino acids and 
fatty acids to aid their rapid proliferation and increased 
communication. An earlier study also demonstrated 
that higher expression levels of genes involved in DNA 
replication were related to poorer survival in patients 
with CRC [20]. These findings imply that the functions and 
pathways discovered in our study are worth exploring.

Given that proteins are the direct mediators of vital 
biological processes, genes screened from the PPI 
network are more likely to provide crucial functions and 
are considered key genes. The node degree of a protein 
represents the number of proteins with which they 
interact. None of the five prognostic genes in this study 
ranked among the genes with the highest node degrees in 
the PPI network; this could be explained by the paucity 
of studies on these genes. Thus, future studies must focus 
on how these genes are involved.

The prognostic genes identified in our study have been 
shown to impact tumor development in different ways. 
ALAD is also known as aminolevulinate dehydratase, 
and its major function is to synthesize heme and inhibit 
the 26S proteasome. A recent study suggested that ALAD 
expression level was lower in breast cancer tissues than 
in normal breast tissues. Increased ALAD expression level 
was correlated with longer disease-free survival of patients 
with breast cancer, which could be caused by inhibiting 
the epithelial-mesenchymal transition [21]. Other studies 
have indicated that genetic variation in ALAD is related 
to the risk of urologic neoplasms and brain tumors [22–23]. 
In our study, ALAD expression negatively affected the 
overall survival of colorectal cancer patients. Choline 
dehydrogenase (CHDH), found in the mitochondria, 
participates in the mitophagy and transformation of 
betaine aldehyde [24]. A study showed that ALAD had 
positive effects on the overall survival of patients with 
head and neck squamous cell carcinoma [25]. It could be 
hypothesized that ALAD functions as a tumor suppressor 
gene. Additionally, CHDH variants were correlated with 
the risk of pancreatic cancer [26].

In our study, inositol-3-phosphate synthase 1 
(ISYNA1) was upregulated in colorectal carcinomas 
compared to that in para-tumor tissues, and its expression 
was correlated with poorer overall survival. Research 

evidence has also demonstrated that the mRNA level of 
ISYNA1 is higher in bladder carcinomas than in para-
tumor tissues and that patients with higher expression 
level of ISYNA1 tended to have higher pathological grades 
[27]. ISYNA1 functions as a regulator of proliferation and 
apoptosis [27]. Additionally, low ISYNA1 expression level 
indicated poorer prognoses for patients with pancreatic 
cancer, which was correlated with p21 inhibition [28]. It 
is also worth mentioning that ISYNA1 is associated with 
the p53 mutation in several tumors, which indicates its 
significant role in tumorigenesis [29].

NAT1 (N-acetyltransferase 1) can metabolize carcinogens, 
and its impact on tumor development has been elucidated 
in numerous studies. Zhao et al found that patients with 
luminal breast cancer had higher expression level of 
NAT1 and that NAT1 could facilitate bone metastasis via 
a downstream pathway [30]. NAT1 was also an indicator of 
response to chemotherapy in patients with breast cancer 

[31]. Shi et al discovered that high expression level of NAT1 
could predict longer overall survival of patients with 
colon adenocarcinoma through the analyses of the RNA-
seq dataset of colon adenocarcinoma (COAD) in TCGA [32]. 
The positive effect of NAT1 on the prognosis of patients 
with CRC was shown by univariate and multivariate Cox 
regression analyses in our study. Thus, we hypothesized 
that NAT1 could function as a tumor suppressor gene 
in CRC. The functions of NAT1 in carcinogenesis have 
also been indicated in bladder cancer and pediatric acute 
lymphoblastic leukemia [33–34]. However, the underlying 
mechanisms have not been explored in depth.

As a key gradient of prolyl 4-hydroxylase, P4HA1 
(prolyl 4-hydroxylase subunit alpha 1) is essential 
for collagen synthesis. P4HA1 is necessary for tumor 
development. P4HA1 was demonstrated to regulate the 
stemness of breast cancer cells and accelerate distant 
metastasis [35]. Another study on pancreatic cancer showed 
that the P4HA1 knockdown could reduce stemness in 
cancer cells and enhance the response to chemotherapy 

[36]. P4HA1 has also been shown to be correlated with 
unfavorable outcomes in patients with high-grade 
gliomas and head and neck squamous cell carcinoma [37–38]. 
A recent study demonstrated that the proliferation and 
invasion of cancer cells could be remarkably promoted by 
P4HA1, and the malignancy of CRC cells could be reduced 
by P4HA1 inhibition [39]. However, the prognostic value 
of P4HA1 in CRC has not yet been verified. Our study 
revealed that P4HA1 was upregulated in CRC tissues and 
that patients with higher P4HA1 expression level had 
poorer outcomes.

Although all five genes affected overall survival, the 
effect of a single gene on patient survival was limited. 
Because it is far from sufficient for one gene to predict 
patient survival, we constructed a prediction model based 
on the prognostic genes. Based on the prognostic genes, a 
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nomogram was used to predict the survival of patients with 
CRC. The prognostic model we established performed 
well in both TCGA and GEO cohorts. Overall, we 
explored the underlying mechanisms of the differentially 
expressed metabolism-associated genes in CRC, identified 
five prognostic genes (ALAD, CHDH, ISYNA1, NAT1, 
and P4HA1), and constructed a prognostic model via a 
series of bioinformatics analyses. Although some studies 
have demonstrated the roles of CHDH, P4HA1, ISYNA1, 
ALAD, and NAT1 in tumor initiation and progression, 
few of them have studied the prognostic value of these 
genes in CRC. The limitation of our study was that all 
conclusions are drawn from data in public databases, and 
as such, in vivo and in vitro experiments were required 
for further verification and mechanistic exploration. 
However, our work provides insight into metabolism-
associated genes in CRC from multiple perspectives and 
will lay the foundation for further studies.
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