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In a typical clinical workflow of radiotherapy (RT), a 
radiation oncologist manually segments a tumor target 
and the organs at risk (OARs) based on the information 
provided by the computed tomography (CT), magnetic 
resonance, and/or positron emission tomography/
CT images [1, 2]. However, this process is usually time-
consuming and laborious, and the quality of segmentation 
significantly depends on the prior knowledge and/or 
experience of the radiation oncologist. Although it is easy 

to distinguish organs with high contrast in CT images, 
distinguishing the boundary between a tumor tissue 
and surrounding normal tissue with similar contrast is 
difficult. Furthermore, inconsistencies in the target and 
OARs segmentations have been reported for both inter-
and intra-observer segmentation variability [3-7]. These 
factors affect the accuracy and efficacy of RT. Therefore, 
it is imperative to improve the consistency and efficiency 
of image segmentation.

Objective To introduce an end-to-end automatic segmentation method for organs at risk (OARs) in chest 
computed tomography (CT) images based on dense connection deep learning and to provide an accurate 
auto-segmentation model to reduce the workload on radiation oncologists.
Methods CT images of 36 lung cancer cases were included in this study. Of these, 27 cases were 
randomly selected as the training set, six cases as the validation set, and nine cases as the testing set. The 
left and right lungs, cord, and heart were auto-segmented, and the training time was set to approximately 
5 h. The testing set was evaluated using geometric metrics including the Dice similarity coefficient (DSC), 
95% Hausdorff distance (HD95), and average surface distance (ASD). Thereafter, two sets of treatment 
plans were optimized based on manually contoured OARs and automatically contoured OARs, respectively. 
Dosimetric parameters including Dmax and Vx of the OARs were obtained and compared.
Results The proposed model was superior to U-Net in terms of the DSC, HD95, and ASD, although there 
was no significant difference in the segmentation results yielded by both networks (P > 0.05). Compared 
to manual segmentation, auto-segmentation significantly reduced the segmentation time by nearly 40.7% 
(P < 0.05). Moreover, the differences in dose-volume parameters between the two sets of plans were not 
statistically significant (P > 0.05).
Conclusion The bilateral lung, cord, and heart could be accurately delineated using the DenseNet-
based deep learning method. Thus, feature map reuse can be a novel approach to medical image auto-
segmentation.
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In recent years, deep learning-based automatic medical 
image segmentation learning has emerged as a popular 
topic in the field of RT [8-10]. Huang et al. [11] proposed 
the DenseNet network, which deploys the concept of 
feature map reuse for small training datasets in supervised 
learning. DenseNet connects multiple dense blocks with 
a transition layer and concatenates the channels of each 
dense block feature map in series to increase the number 
of feature maps and improve their utilization rate.

In this study, FC_DenseNet, a deep learning model 
based on DenseNet and fully convolutional networks, 
was employed. The model learns the planar distribution 
characteristics of the OARs in CT images through the 
dense block module to achieve end-to-end accurate 
OARs delineation for non-small cell lung cancer (NSCLC) 
patients.

Materials and methods

Data acquisition and preprocessing
CT images of 36 NSCLC patients from the Seventh 

Medical Center of the PLA General Hospital were 
acquired. The obtained four-dimensional-CT images 
were scanned using a Philips Brilliance Big Bore simulator 
(Philips Medical Systems, Madison, WI, USA) from the 
level of the larynx to the bottom of the lungs with a 
3-mm slice thickness in the helical scan mode. This study 
was approved by the Ethics Committee of the Seventh 
Medical Center at the Chinese PLA General Hospital. 
All the patients provided written consent towards 
recording their medical information in the hospital 
database. By analyzing the DICOM file, the grey value 
of the original CT image was mapped to a range of 0–255, 
and the window width and level were set to 400 and 40, 
respectively. Different OARs were filled with different 
grayscale values to generate masked images as training 
labels, as shown in Fig. 1.

The training and validation datasets comprised 3803 
CT images recorded from 27 patients and 650 images 
recorded from six patients, respectively. The testing set 

included 567 images recorded from nine patients. After 
data cleaning and enhancement, the images were sent to 
FC_DenseNet. All the training, validation, and testing 
tasks were performed on an 11-GB NVIDIA GeForce 
GTX 1080 Ti GPU. The start and end times of the manual 
and auto-segmentation operations for each patient in the 
testing set were recorded.

FC_DenseNet model for segmentation
In this study, FC_DenseNet was trained to auto-segment 

four types of OARs for diagnosing or monitoring NSCLC. 
The specific architecture of the model is illustrated in Fig. 
2. The segmentation process was primarily divided into 
two parts: (a) The left half, called the analysis path, was 
composed of a density block module and transition down 
module connected by a short cut layer to extract image 
features. (b) The right half, called the synthesis path, was 
upsampled by the transition-up transposition convolution 
module to recover the size of the feature image layer. To 
improve the accuracy of the reconstructed image and 
accelerate the convergence of the network parameters, 
feature maps of the same size in the analysis path were 
connected in series as the input to the next layer of the 

Fig. 2 Scheme of FC_DenseNetFig. 1 Original image and mask map (label)
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set and that of a single 512 × 512 CT image were set to 
approximately 12.58 min/epoch and 0.17s, respectively. 
Approximately 13.4 s were required to delineate all the 
CT images of a patient.

Accuracy evaluation
The auto-segmentation performance was evaluated 

based on geometric evaluation indices, including the Dice 
coefficient (DSC), 95% Hausdorff distance (HD95), and 
average surface distance (ASD). The OAR segmentation 
performance of the FC_DenseNet network was compared 
with that of U-Net. Thereafter, two sets of RT plans 
were optimized with manually contoured OARs and 
automatically contoured OARs, respectively. Dosimetric 
parameters including Dmax (i.e., the dose received by 2% 
of the volume) and Vx (i.e., the volume receiving more 
than x Gy dose as a percentage of the total volume) were 
obtained and compared.

Statistical analysis
SPSS 20.0, a statistical software (version 20.0, SPSS 

Inc., Chicago, USA), was used for the Wilcoxon signed 
rank test, and the difference, at a significance level of α 
= 0.05, P < 0.05, was found to be statistically significant.

Table 1 Comparison of Dice parameters for both networks (χ ± s)
Cord Heart Right lung Left lung

Densenet 0.90 ± 0.02 0.84 ± 0.10 0.93 ± 0.06 0.97 ± 0.01
U-Net 0.87±0.05 0.82 ± 0.12 0.92 ± 0.07 0.96 ± 0.02
P value 0.106 0.752 0.904 0.141

Table 2 Comparison of HD95 parameters for both networks (χ ± s)
Cord Heart Right lung Left lung

Densenet 1.85 ± 0.36 15.95 ± 16.0 9.48 ± 5.50 6.97 ± 3.41
U-Net 2.42 ± 0.66 18.65 ± 15.2 13.2 ± 8.99 9.56 ± 4.62
P value 0.109 0.930 0.642 0.255

Table 3 Comparison of ASD parameters for both networks (χ ± s)
Cord Heart Right lung Left lung

Densenet 0.69±0.13 6.98±5.55 1.81±1.61 1.11±0.51
U-Net 0.86±0.26 7.52±4.65 2.55±2.82 1.72±0.60
P value 0.304 0.900 0.789 0.053

density block.
The input to each layer of the dense block was 

composed of all the outputs of the front layer after a 
dense connection (as shown in Fig. 3). The output of each 
layer possessed the following corresponding functional 
relationship with the output of the other front layers:                                                        

where H (*) is a nonlinear function, denoting a 
series of operations, including batch normalization, 
ReLU activation, pooling, and convolution, that were 
used to extract features, adjust the size of the feature 
map, and reduce the channel dimension. A bottleneck 
architecture was set in each network, as the operation of 
dense connections could induce a surge in the number 
of channels and increase the training difficulty. The 
bottleneck architecture uses a 1 × 1 convolution kernel 
to realize cross-channel feature fusion and enhance the 
feature extraction ability of the network.

FC_DenseNet training 
Following cleaning and augmentation, the data were 

sent to the FC_DenseNet for training. The weight and 
bias of the network were updated using the cross-entropy 
loss function, as follows:

where χ is the input of the network, 

<

y is the posterior 
probability output after network regression, and κ is the 
number of categories. 

In this study, an early stop module was incorporated 
to detect the network accuracy and loss function value 
with an increase in the iterative epoch, and the network 
architecture of DensNet56 in the 30th epoch was selected. 
During the network training process, the initial learning 
rate was set to 1e-3, which decreased with an increase in 
the epoch. This ensured that the network could converge 
quickly in the initial stage of training while preventing 
poor feature generalization arising from network 
overfitting. The average segmentation time of the training 

Fig. 3 Scheme of Dense Block
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Results 

The geometric evaluation indices including DSC, HD95, 
ASD for the FC_DenseNet and U-Net networks are listed 
in Tables 1–3, respectively. As can be inferred, DenseNet 
outperforms U-Net, although there is no significant 
difference between the two (P > 0.05). A comparison of the 
results obtained for automatic and manual segmentation 
based on DenseNet for a typical patient is presented in 
Figure 4. The dose-volume parameters of the OARs based 
on manual and automatic segmentation are listed in 
Table 4. There are no statistically significant differences 
between the dosimetric parameters of the manually and 
automatically delineated OARs (P > 0.05). The average 
time of manual segmentation by a radiation oncologist for 
nine patients in the testing set is 15.2 min. Whereas, auto-
segmentation, which can be achieved with an average 
segmentation time of 9.0 min, significantly improves the 
delineation efficiency (P < 0.05).

Discussion

As can be observed from the results produced by both 
networks, it is easier to segment the lungs than it is to 
segment the spinal cord and heart. In the original CT 
image, there are obvious boundaries between the left and 
right lungs; further, the deep learning network makes it 
easier to extract the edge features. Compared to the lungs, 
although the spinal cord possesses a bone structure as a 
support and obvious texture and edge differentiation, it 
accounts for less area in the image. The negative samples 
in the background image significantly outnumber the 
positive samples in the spinal cord, thereby producing an 
imbalance that degrades the segmentation accuracy. The 
heart is at the center of the slice and is surrounded by 
other organs such as the larynx and esophagus. The image 
features at the center are not strong, which makes the 
segmentation result slightly worse than that of the lungs.

Compared to U-Net, the average DSC of FC_DenseNet 
is slightly higher, and the variance is small, which indicates 
that the auto-segmentation performance of FC_DenseNet 
is more stable, and the generalization of the model is 
better. The HD95 score is an index used to measure the 
maximum distortion of the segmentation results, and it 
is influenced by the number of outliers. FC_DenseNet 
had better continuity and produced fewer outliers. The 
number of CT layers for each patient was not the same; 
therefore, the segmentation time for each patient was 
different. According to the evaluation benchmark [12] 
provided by the report on the thoracic organs auto-
segmentation challenge organized by the American 
Association of Medical Physicists annual meeting in 
2017, the organ with the highest DSC is the lung, with 
an average value between 0.95 and 0.98. The results of 
our study are relatively consistent with this value. Zhang 
et al. [13] developed a two-dimensional-AS-CNN based 
on the ResNet101 network using a dataset of 250 lung 
cancer patients. The average DSC scores for the left lung, 
heart, right lung, spinal cord, and esophagus were 0.94, 
0.89, 0.94, 0.82, and 0.73, respectively. The DSC score of 
the spinal cord obtained by the proposed model was 0.89, 
which was significantly better than that of the AS-CNN. 
FC_DenseNet, used in this study, is a lightweight model 
with a more concise architecture.

Owing to the difference in the training datasets, it was 
difficult to compare the advantages and disadvantages of 
the proposed method and those of the extant method. 
However, although significantly fewer training cases 
were used in this study, FC_DenseNet exhibited a strong 
feature extraction ability in the training of small samples, 
and the segmentation results were similar to those of the 
training model with large datasets.

Zhu et al. [14] proposed an auto-segmentation model 
based on depth convolution to segment the CT images 

Fig. 4 Schematic of automatic OAR segmentation using the DenseNet 
network (green and red lines represent manual and automatic 
segmentation contours, respectively)

Table 4 Dosimetric comparison of the OARs between manual and 
DenseNet auto-segmentation.
Dosimetric 
parameters Manual AI P value

Spinal Cord Dmax 16.15±8.62 18.75±7.41 0.314
Heart V30 0.40±1.09 0.06±0.12 0.180

V40 0.19±0.56 0.03±0.07 0.180
Mean (Gy) 1.71±1.58 1.33±1.17 0.110

Lung All V5 27.55±6.81 28.19±6.78 0.515
V10 15.49±4.41 14.83±4.54 0.953
V20 9.40±3.69 9.44±3.89 0.859
V30 6.57±3.25 6.64±3.36 0.263

Mean (Gy) 6.49±1.94 6.56±2.01 0.173
MU 979.56±97.49 977.11±102.19 0.515
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of patients with lung cancer. In this model, a U-shaped 
network with a three-dimensional convolution kernel 
was used. The HD95 score was between 7.96 mm and 8.74 
mm, and the ASD was between 1.81 mm and 2.92 mm. 
The resulting segmentation performance was significantly 
better than that of DenseNet. This may be because 
DenseNet, used in this study, is a two-dimensional model, 
and the extracted features are different owing to the poor 
continuity of the feature sequence in space.

Currently, there exist three primary development 
directions for deep learning networks in medical image 
segmentation. The first direction is to deepen the network 
level and depth, extract deeper semantic features to obtain 
a stronger expression ability, or widen the network to 
increase the number of channels to obtain additional 
information in the same layer such as the texture features 
of different frequencies and boundary features in different 
directions. The second direction is to achieve a more 
effective spatial feature extraction ability by learning the 
sequence association properties of multiple CT levels of a 
given case, represented by three-dimensional U-Net and 
several other derivative networks. The third direction, 
represented by DenseNet, is to improve the utilization 
rate of feature maps by sharing them layer by layer to 
enhance the feature expression ability of the image and 
improve the generalization performance of the network [15].

Herein, the results demonstrated that FC_DenseNet 
outperforms U-Net with regard to the segmentation of 
OARs; even when the training set contained fewer images, 
FC_DenseNet still effectively prevented overfitting. 
Simultaneously, it prevented gradient disappearance 
during the training process by repeatedly using different 
levels of feature maps. Thus, this study provides a new 
approach for medical-image segmentation.
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