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Abstract Objective The objective of this study was to identify new carcinogenetic hub genes and develop the 
integration of differentially expressed genes to predict the prognosis of lung cancer.
Methods GSE139032 microarray data packages were downloaded from the Gene Expression Omnibus 
for planning, testing, and review of data. We identified KRT6C, LAMC2, LAMB3, KRT6A, and MYEOV from 
a key module for validation. 
Results We found that the five genes were related to a poor prognosis, and the expression levels of 
these genes were associated with tumor stage. Furthermore, Kaplan-Meier plotter showed that the five 
hub genes had better prognostic values. The mean levels of methylation in lung adenocarcinoma (LUAD) 
were significantly lower than those in healthy lung tissues for the hub genes. However, gene set enrichment 
analysis (GSEA) for single hub genes showed that all of them were immune-related. 
Conclusion Our findings demonstrated that KRT6C, LAMC2, LAMB3, KRT6A, and MYEOV are all 
candidate diagnostic and prognostic biomarkers for LUAD. They may have clinical implications in LUAD 
patients not only for the improvement of risk stratification but also for therapeutic decisions and prognosis 
prediction. 
Key words: lung adenocarcinoma (LUAD); bioinformatics; gene expression omnibus; gene expression 
profiling interactive analysis (GEPIA); prognosis; methylation
Abbreviations: LUAD, lung adenocarcinoma; GSEA, gene set enrichment analysis; NSCLC, non-small-
cell lung cancer; WGCNA, weighted gene co-expression network analysis; MEs, module eigengenes; GS, 
gene significance; MS, module significance; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, gene 
ontology; CC, cellular component; MF, molecular function; BP, biological process; GEPIA, gene expression 
profiling interactive analysis; HPA, Human Protein Atlas; TIMER, Tumor Immune Estimation Resource; 
TCGA, The Cancer Genome Atlas; OS, overall survival; PF, first progression; PPS, post-progression 
survival; IHC, immunohistochemical

Lung cancer is the most frequently diagnosed type 
of cancer, accounting for 11.6% of all cancer cases, and 
is a leading cause of cancer morbidity, representing 
18.4% of all cancer-related deaths [1]. Non-small cell 
lung cancer (NSCLC) is the most prevalent type of lung 
cancer, and lung adenocarcinoma (LUAD) is the most 
common subtype of NSCLC, representing almost half of 

lung cancer diagnoses [2]. Standard treatment for LUAD 
is surgical resection and chemotherapy, which improves 
survival rates by 5%–10% [3]. Many treatment options 
exist for LUAD; however, appropriate treatment usually 
depends on the stage of LUAD. Five-year survival rates 
are low and stage-dependent [3]. It has been reported that 
the number of CD133+ cells, which can increase drug 
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(GS) was utilized in the linear regression to quantify the 
relevance of the gene and clinical features [8]. The average 
absolute GS in a specific module was measured using 
module significance.

Functional enrichment analysis  
of gene ontology and KEGG

DAVID (https://david.ncifcrf.gov/), an online public 
web server, was used to characterize and manipulate 
gene lists by mining high-throughput genomic data and 
performing gene ontology (GO) and KEGG signaling 
pathway enrichment analysis. Cellular component (CC), 
molecular function (MF), and biological process (BP)were 
the three categories included in the ontology. A P-value < 
0.05 was considered statistically significant.

Hub gene selection and validation
Gene connectivity was measured using the absolute 

value of Pearson’s correlation, defined by module 
connectivity (cor. Gene module membership > 0.8) and 
clinical connectivity (cor. genetrait significance > 0.2).
Gene expression profiling interactive analysis (GEPIA) 
was utilized to validate the central hub genes of LUAD. 
Immunohistochemistry of the five genes identified was 
performed using the Human Protein Atlas (HPA) (http: 
//www.proteinatlas.org), which showed that the genes 
were upregulated in tumors.

Methylation analyses of hub genes
The human disease methylation database 

(DiseaseMeth version 2.0, http://biobigdata.hrbmu. edu.
cn/diseasemeth/) contains methylome information from 
high-throughput microarray and sequencing studies 
of human methylation and shows DNA methylation 
abnormalities for human diseases in a case-control or 
disease-disease format [11–12].

Differences in the methylation levels of hub genes 
in cancerous lung tissues were compared with those 
in healthy lung tissues using the cBioPortal for Cancer 
Genomics (https://www.cbioportal.org/). Genetic 
changes associated with the hub genes were investigated 
to explore the associations between mRNA expression 
and DNA methylation in lung cancer using a large-scale 
cancer genome database.

Evaluation of the immunological infiltrate
To study the relationship between hub gene expression 

and immune cell infiltration, we used the online TIMER 
tool [13–14]. Samples (10 897) from a wide variety of cancers 
available from The Cancer Genome Atlas (TCGA) were 
used to study the interaction between hub gene expression 
and immune cell tumor infiltration.

Gene set enrichment analysis of hub genes
GSEA 3.0 software was used to analyze the hub genes 

resistance and the likelihood of tumor recurrence, are 
enhanced by the chemotherapeutic agent, cisplatin [4]. 
Early identification of LUAD through the discovery of 
relevant tumor biomarkers is urgently needed to improve 
prognoses [5–6]. 

A weighted gene co-expression network analysis 
(WGCNA) was used to identify correlations in gene 
patterns. We constructed a free-scale gene co-expression 
network to discover modules with highly correlated 
genes. Accordingly, we discuss here potential biomarkers 
of lung cancer to improve patient prognosis via a 
systematic biological method using WGCNA.

Materials and methods

Data procession and construction  
of co-expression network

Gene expression dataset GSE139032 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139032), 
including 77 lung adenocarcinomas and 77 matched non-
malignant lung samples (Illumina HumanMethylation27 
BeadChip), were downloaded from the Gene Expression 
Omnibus [7]. Sangerbox (http://www.sangerbox.com), a 
free online tool for data analysis, was utilized to analyze 
sample information and dataset matrices. The top 50% of 
the most variable genes (7239) from the dataset (14 477 
genes) were chosen by analysis of variance. Sangerbox was 
used to perform WGCNA, and study-specific parameters 
and WGCNA rationale are as follows [8]. 

First, a co-expression network was constructed with 
Pearson correlation coefficients i and j representing the 
expression levels of the ith and jth genes, respectively.

Sij = |1 + cor (xi + yi)/2|
Second, the co-expression similarity was transformed 

into the adjacency according to the following equation:
aij = |(1 + cor (xi + yi))/2|β

β: soft thresholding, which revealed the adjacency of a 
signed network [9]. We selected a soft threshold parameter 
power of β = 7 to build an approximately scale-free 
network to balance the scale-free network properties.

Third, the topological overlap measure (TOM) 
transformation was calculated from the adjacency matrix 
using 

TOM = (∑μ≠ij
αiμαμj +αij) / (min (∑μ

αiμ + ∑μ
αjμ) + 1 – αij)

to further convert the adjacency matrix of the 7239 
genes from the co-expression network to the screening 
function module [10]. 

Screening of clinically significant modules
Module eigen genes (MEs) represent all genes in a 

specific module, which were screened for the identification 
of clinically relevant modules that correlate to a specific 
cancer type. Clinical traits, such as tumor stage and tumor 
grade, were calculated for each ME. Gene significance 
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associated with immune infiltration of a variety of 
biological function gene sets in lung cancer.

Statistical analysis
WGCNA was performed using the Sangerbox platform 

(version 1.0.9) based on R software version 3.4.3. We 
utilized the Kaplan-Meier method to perform survival 
analysis using the log-rank test. The independent samples 
t-test for data comparison was performed by GEPIA. 
P-values < 0.05 (two-sided) were considered statistically 
significant.

Results

Weighted co-expression network building  
and key modules recognition

The coefficient and average association of Pearson’s 
correlation were used to cluster the GSE139032 sample 
based on the WGCNA packages in R (Fig. 1 and 2). 
After transforming the co-expression similarity matrix, 
we computed the TOM to identify modules utilizing 
the dynamic tree cut method (Fig. 2c). WGCNA was 
performed to collect information for a co-expression 
network [9]. The soft threshold parameter power of β = 

7 was selected to balance the scale-free nature of the 
network for a network that will be approximately scale-
free (Fig. 2a and 2b). Using the average hierarchical 
linkage, 11 modules were identified. The turquoise 
module was selected as the clinically meaningful unit 

Fig. 2 Identification of modules related to clinical traits of LUAD through WGCNA. (a) Scale-free fit index analysis for a variety of soft threshold 
strengths (β). (b) Mean connectivity study for a number of soft thresholds. All modules were related to the respective LUAD clinical characteristics 
that were screened. (c) Gene dendrogram of differentially expressed genes obtained through clustering as a measure of dissimilarity (1-TOM). Each 
branch represents a single gene in the dendrogram. A specific color signifies a single module containing closely conserved genes. (d) Connection of the 
clinical phenotype of LUAD and consensus module eigengenes. (e) Bar graphs indicating the importance and errors of the individual modules across 
all modules associated with the LUAD tumor stage. (f) Scatter plot for the relationship between the significance of the gene and the membership of the 
gene module in the turquoise module. Every circle is a gene

Fig. 1 Clustering dendrogram of 152 samples
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owing to its close interaction with tumor stage (Fig. 2d) 
and the highest tumor stage association (Fig. 2d).

Functional enrichment analysis
GO and KEGG pathway enrichment analyses were 

performed. Functional groups included three parts (CC, 
MP, and BP) to analyze GO enrichment. Enrichment of 
genes in the CC group from the turquoise module mainly 
included the extracellular region, extracellular space, 
integral component of the plasma membrane, extracellular 
exosome, plasma membrane, cornified envelope, 
intermediate filament, apical plasma membrane, and 
blood microparticle. The genes from the module in the 
MF group were chiefly enriched in structural molecule 
activity, iron ion binding, CC chemokine receptor binding, 
serine-type endopeptidase activity, serine-type peptidase 
activity, calcium ion binding, chemokine activity, serine-
type endopeptidase inhibitor activity, cytokine activity, 

and heme-binding. The BP group included clinically 
significant genes in the following modules: keratinization, 
immune response, peptide cross-linking, neutrophil 
chemotaxis, keratinocyte differentiation, innate immune 
response, monocyte chemotaxis, inflammatory response, 
epidermis development, and lymphocyte chemotaxis 
(Fig. 3). Hub genes from the turquoise module were 
enriched in the KEGG pathway as follows: cytokine 
receptor interaction, hematopoietic cell lineage, systemic 
lupuserythematosus, pancreatic secretion, carbohydrate 
digestion and absorption, neuroactive ligand-receptor 
interaction, complement and coagulation cascades, 
rheumatoid arthritis, fat digestion and absorption, and 
toll-like receptor signaling pathways.

Hub gene selection and validation
In terms of cut-off criteria |MM| > 0.8 and |GS| > 0.2, 

we identified 2496 hub genes from the turquoise unit. A 

Fig. 3 The enrichment analyses of KEGG and GO pathways for all turquoise genes. An analysis of the (a) KEGG pathway of turquoise genes; (b) 
cellular components; (c) molecular function; and (d) biological process
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Kaplan-Meier plotter was used to estimate the clinical 
prognostic significance of the hub genes. We found five 
genes (MYEOV, LAMC2, LAMB3, KRT6C, and KRT6A) 
that were negatively related to overall survival (OS) and 
first progression. MYEOV, LAMC2, KRT6C, and KRT6A 

were associated with post-progression survival (PPS). 
LAMB3 was not associated with PPS (Fig. 4). GEPIA 
revealed a substantially higher level of expression of 
these five genes in tumor tissues than innormal tissue 
(Fig. 5a–5e). However, in advanced tumor stages, 

Fig. 4 Survival analysis using the Kaplan-Meier curve of MYEOV, LAMC2, LAMB3, KRT6C, and KRT6A in LUAD patients. HR, hazard ratio
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based on a GEPIA cancer stage analysis, the expression 
levels of these five genes were found to be completely 

unregulated (Fig. 5f–5j). To estimate the expression of the 
proteins corresponding to the genes, the Protein Atlas 

Fig. 5 (a–e) Expression of the five hub genes in LUAD and normal tissues (P < 0.01) from GEPIA. T: tumor, N: normal. (f–j) Correlation between 
expression of the five hub genes and tumor stage in LUAD using GEPIA. P < 0.05 represented a statistical difference. (k–t) Immunohistochemistry of the 
five hub genes in LUAD based on the Human Protein Atlas. (k and p) MYEOV; (l and q) LAMC2; (m and r) LAMB3; (n and s) KRT6C; (o and t) KRT6A. 
The top row is cancerous and the bottom row is normal lung tissue.
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database (https://www.proteinatlas.org/) was used for 
immunohistochemistry (IHC) (Fig. 5k–5t).

Association between methylation  
and hub gene expression

The association between the expression of the five 
hub genes and their methylation status were analyzed 
to identify possible mechanisms for upregulation in 
lung tissues. A review of the human disease methylation 

databases (DiseaseMeth version 2.0) revealed that the 
mean levels of methylation in LUAD were significantly 
lower than those in healthy lung tissue for MYEOV, 
LAMC2, LAMB3, KRT6C, and KRT6A (Fig. 6a–6e). Fig. 
6f–6j shows the correlation between mRNA expression 
and DNA methylation expression in the TCGA LUAD 
patient dataset. The negative correlations between them 
indicated that mRNA expression levels of these genes 
were maintained by methylation (cBioPortal dataset 

Fig. 6 Methylation analyses of the hub genes in LUAD. (a–e) The methylation levels of the genes in tumor and normal tissues. (a) MYEOV; (b) LAMC2; 
(c) KRT6A; (d) LAMB3; (e) KRT6C. (f–g) Relationship between mRNA expression and DNA methylation in the TCGA data set of hub genes. (f) MYEOV; 
(g) LAMC2; (h) LAMB3; (i) KRT6C; (j) KRT6A
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https://www.cbioportal.org/).

Association between hub gene expression  
and immune infiltration

For the lung cancer hub genes, we used the TIMER 
platform to investigate possible associations between gene 
expression and immune infiltration. MYEOV, LAMB3, 
LAMC2, KRT6C, and KRT6A were positively correlated 
with tumor purity and B cells (Fig. 7). CD4+ T cells, CD8+ 
T cells, neutrophils, macrophages, and dendritic cells 
showed no or low correlation with MYEOV, LAMB3, 
LAMC2, KRT6C, and KRT6A. 

Relationship between hub genes and immune 
signaling pathway

GSEA was performed to investigate the functions of 
MYEOV, LAMB3, LAMC2, KRT6C, and KRT6A. KRT6A 
was enriched in “peroxisome,” “FC epsilon RI signaling 
pathway,” and “complement and coagulation cascade” 
pathways (Fig. 8). KRT6C was enriched in “antigen 
processing and presentation,” “cytosolic and sensing 
pathway,” and “Toll-like receptor signaling pathway.” 
LAMB3 was enriched in “calcium signaling pathway” 
and “FC epsilon RI signaling pathway.” MYEOV was 
enriched in “RIG-I-like receptor signaling pathway.” 
LAMC2 was enriched in “dorsoventral axis formation” 

Fig. 7 LUAD immune infiltration connected with hub gene expression. (a) MYEOV; (b) LAMC2; (c) LAMB3; (d) KRT6C; (e) KRT6A. A P-value of < 0.05 
was considered statistically significant. Each dot corresponds to a sample in the dataset of TCGA-PRAD
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Fig. 8 Gene set enrichment analysis (GSEA) of significant gene sets in accordance with the GSEA enrichment score of the five hub genes. (a–c) 
KRT6A; (d–f) KRT6C; (g–h) LAMB3; (i) MYEOV; (j–k) LAMC2
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and “FcEpsilonRI signaling pathway.”

Discussion

Survival after diagnosis of NSCLC improved from 2013 
to 2016 in the United States and is related to the use of 
targeted therapies [15]. As a molecularly heterogeneous 
disease, understanding the biology is critical for the 
treatment of lung cancer. The treatment of lung cancer has 
transformed owing to the identification of targetable gene 
alterations and the utilization of individualized therapy 
resulting from tumor genotyping. In comparison to those 
without targeted therapies, the survival of patients who 
are treated with genotype-directed therapy has improved 
[16]. New diagnostic and prognostic markers that might 
support the treatment of lung cancer are crucial.

Our study used the WGCNA approach to construct 
co-expression modules of genes related to lung cancer. In 
comparison to traditional microarray expression profiling, 
WGCNA focused more on a batch of gene modules 
rather than on individual genes, which may avoid the 
drawbacks of treating genes separately and prevent 
missing the transcriptional molecular networks [17]. In our 
study, comprehensive bioinformatics analyses, including 
WGCNA, were used to screen five genes connected to the 
progression and prognosis of LUAD.

MYEOV is found in the chromosomal region 
(chr) 11q13.3, which is associated with carcinogenic 
amplification [18–19]. This region has been studied in 
various cancers, including colon [20], gastric [21], esophageal 
squamous cell [22], neuroblastoma [23], and multiple 
myeloma [24]. MYEOV is a prognostic factor in multiple 
myeloma [24]. The molecular mechanisms of carcinogenic 
amplification are still unclear.

Laminin-5 is a large molecule of α3, β3, and μ2 chains 
encoded by LAMA3, LAMB3, and LAMC2, respectively, 
and is necessary for cancer diagnosis. Outcomes for 
patients with stage I LUAD correlated with dysregulated 
LAMC2 protein expression [25–27]. Moreover, LAMB3 
cleavage by membrane type-1-matrix metalloproteinase 
(MT1-MMP) [28] and matrilysin [29] was associated with 
increased carcinoma cell migration. Our results implied 
that LAMC2 and LAMB3 expression are upregulated in 
tumor tissues compared to that in healthy tissues and 
arerelated to advanced tumor stage (Fig. 5f–5j). However, 
the influence of LAMC2 and LAMB3 overexpression in 
lung cancer is unclear.

The most common proteins in exhaled breath 
condensate samples are KRT6C and KRT6A, and their 
expression levels in lung cancer tissues are high [30]. We 
found that KRT6C and KRT6A overexpression were 
associated with poorer prognosis and advanced tumor 
stage in LUAD (Fig. 4 and Fig. 5f–5j). 

Our study had several limitations. First, as with 

most data mining methods, technical artifacts or 
tissue contaminations may have influenced our 
WGCNA results. Second, owing to HPA limitations, 
the immunohistochemical data shown were from an 
assortment of patient samples that may not be relevant 
for LUAD.

DiseaseMeth 2.0 and cBioPortal were also utilized 
to explore DNA methylation patterns that may have an 
aberrant expression in LUAD. In comparison to standard 
samples, MYEOV, LAMB3, LAMC2, KRT6C, and KRT6A 
were found to be hypomethylated and associated with 
the upregulation of the five hub genes observed in LUAD. 
DNA methylation abnormalities are significantly related 
to the oncogenic properties of alternative promoters [31]. 
Feinberg pointed out that DNA methylation is responsible 
for the occurrence of cancer progenitor cells [32]. DNA 
hypomethylation of promoter region melanoma-related 
CT antigen MAGE was associated with recrudescence 
in colorectal cancer and melanoma [33–34]. In breast and 
colorectal cancers, overexpression of P-cadherin is caused 
by hypomethylation of the promoter region of CDH3 and 
promotescell invasion, motility, and migration [35]. 

We used TIMER and GSEA for each hub gene to 
investigate biological functions. Tumor purity and B cells 
positively correlated with MYEOV, LAMB3, LAMC2, 
KRT6C, and KRT6A. In LUAD samples, no significant 
associations were found between these hub genes and 
other immune infiltrates. GSEA indicated that single 
hub genes were significantly enriched in immune 
pathways. Increased expression of T and B cells, such 
as adenocarcinoma B cells and CD8 cells, predicts OS in 
patients with LUAD [36]. Moreover, further research needs 
to be conducted to study the correlation between the hub 
genes and smokers carrying lung cancer, in terms of an 
increase in the development of squamous cell carcinoma. 
Deficient-type GSTM1 has been shown to increase the 
risk of squamous cell carcinoma development [37]. We 
believe that the five hub genes are mainly expressed in 
lung cancer cells and are related to B cell functions.

Conclusion
We identified five hub genes (MYEOV, LAMB3, 

LAMC2, KRT6C, and KRT6A) that were correlated 
with the development and prognosis of lung cancer 
and potentially regulated by epigenetic mechanisms. 
Additional research is required to demonstrate their 
contribution to the pathogenesis of lung cancer and 
confirm their utility as diagnostic and/or predictive 
biomarkers.
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