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According to the central dogma of molecular biol-
ogy, DNA is transcribed into messenger RNA (mRNA), 
and proteins are synthesized from mRNA via transla-
tion. However, in the recent decade, the complexity of 
the transcriptome has been appreciated further. An in-
creasing number of unknown non-coding RNA species, 
including small RNAs, small nuclear RNA (snRNA), and 
small nucleolar RNA (snoRNA), have been discovered. 
Small RNAs include microRNAs (miRNAs), small inter-
fering RNAs (siRNAs), and PIWI-interacting RNA (piR-
NAs). These diverse RNA species further our understand-
ing of the regulation of DNA, RNA, and protein. Most 
non-coding RNA species play crucial roles in regulation 
(Table 1). The diverse regulatory functions of miRNAs in 
the cell cycle and in cell proliferation and differentiation 
have been identified by a large number of studies. This 
review outlines miRNA biogenesis and the essential roles 
of miRNA in various diseases, especially cancer. In addi-
tion, the diagnostic and therapeutic application of miR-
NAs, e.g., as disease biomarkers, and the development of 
new drugs targeting miRNA are discussed.

microRNAs (miRNAs) 

miRNAs (also known as small molecular RNAs), ap-

proximately 21 to 23 nucleotides in length, are RNA mol-
ecules that are widely distributed in eukaryotes; these 
miRNA can regulate gene expression. The evolution of 
miRNA is relatively conservative and it belongs to a class 
of non-coding RNAs that are transcribed from DNA but 
are not further translated into proteins. miRNAs target 
messenger RNA (mRNA) with a specific combination to 
inhibit gene transcription and play a significant role in 
the regulation of gene expression, cell cycle, biological 
development, etc. [1–2]. The biogenesis of miRNA has been 
extensively studied. miRNAs are initially transcribed 
from intragenic or intergenic regions by RNA poly-
merase II as variable-length transcripts, usually between 
1 kb and 3 kb in size, called long primary RNAs (pri-mi-
croRNAs) [3–5]. The pri-microRNA is then processed by 
nuclear RNase III enzyme Drosha together with DGCR8 
(DiGeorge syndrome critical region gene 8), which is a 
double-stranded RNA binding domain (dsRBD) partner 
of Drosha, into short –70-nucleotide RNA hairpin struc-
tures called precursor microRNAs (pre-microRNAs). This 
pre-microRNA hairpin is then exported out of the nucleus 
into the cytoplasm with the help of RanGTP-dependent 
Exportin 5 [6–7]. 

In the cytoplasm, the pre-microRNA is processed by 
Dicer, another RNase III enzyme, into a mature double-
stranded miRNA of variable length (–22 nucleotides) 
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[8–9] (Fig. 1). TRBP, the dsRBD partner of Dicer, releases a 
19–24-nucleotide fragment from the pre-microRNA hair-
pin. The miRNA plus-strand is usually degraded, and the 
separated strand of the mature miRNA is loaded onto the 
RNA-induced silencing complex (RISC), which is an ef-
fector complex comprising miRNA, Argonaute protein 1 
to protein Argonaute 4, and other protein factors [10]. Ar-
gonaute protein contains a PIWI domain that binds to the 
5′ end of the miRNA; hence, it is important for the recog-
nition of specific target mRNAs that result in post-tran-
scriptional repression or degradation of the target mRNA 
depending on the pairing complementarities [11–12].

Discovery of miRNA 

Victor Ambros and Gary Ruvkun discovered the first 
miRNA in 1993, when they were studying a gene named 
lin-4 in Caenorhabditis elegans; they confirmed that it 
controlled developmental timing in the worm by bind-
ing partially to the 3’ untranslated region (UTR) of lin-14 
mRNA [13–14]. In the following years, lin-4 did not receive 
much attention and it was regarded an oddity in worm 
genetics, until a second small regulatory RNA, named let-
7, was discovered in the worm [15]. These odd discoveries 
attracted the interests of Victor Ambros, David Bartel, 
and Thomas Tuschl; they began to look for other small 
RNAs in different organisms, and found a large number 
of miRNAs in C. elegans, Drosophila embryos, and hu-
man HeLa cells [16–17]. Subsequently, the first studies to 
report that miRNA dysregulation could cause human 
disease were published. Later, researchers found that 
miR-15a and miR-16-1 were deficient or downregulated 
in several cases of B cell chronic lymphocytic leukemia 
(CLL) [18], which led to an increase in the number of stud-
ies evaluating the function of miRNAs. For example, miR-
155, the first human oncogenic miRNA to be identified, 
was found to be upregulated in hematological malignan-
cies and in inflammatory responses of macrophages [19–21]. 
miR-146a/b, miR-132, and miR-155 are upregulated in 
the human monocytic cell line THP-1 following stimula-
tion by LPS [22]. Eventually, several studies investigating 

Table 1 The role of some non-coding RNA
tRNA (transfer RNA) Translation
siRNA (small interfering RNA) RNA silencing
microRNA (microRNA) RNA silencing
snRNA (small nuclear RNA splicing
 ribonucleic acid)
snoRNA (small nucleolar RNA) Guide chemical modifications of

 other RNAs
piRNA (Piwi-interacting RNA) Gene silencing in retrotransposons 

 and other genetic elements in
    germ line cells

gRNA (guide RNA) RNA editing

Fig. 1 The formation and function of 
microRNA
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the different aspects and roles of miRNA were undertak-
en. Owing to these studies, we now have a deeper cogni-
tion of the functions of miRNA.

Distribution of miRNA

In the last 10 years, an increasing number of studies 
have focused on miRNA research and discovery. miRNAs 
are highly conserved and are ubiquitous in both animals 
and plants. Almost 30% of the activity of protein-coding 
genes is predicted to be regulated by miRNAs in mam-
mals, and this aspect is being intensively researched upon 
in many fields. Different tissues have been found to ex-
hibit distinctive patterns of miRNA expression. In addi-
tion, some miRNAs are ubiquitously expressed (Table 2) 
[23].

miRNA and diseases

As seen in Fig. 1, miRNAs play pivotal roles in many 
biological processes such as cell growth, apoptosis, gene 
regulation, angiogenesis, cell cycle, and cancer cell me-
tastasis/invasion. Therefore, miRNAs are associated with 
numerous human diseases. Dysregulation of miRNAs 
causes many diseases including various types of cancer 
and immune disorders. miRNAs can serve as promising 
therapeutic targets for several diseases because of their 
oncogenic functions, and potential therapies targeting 
miRNAs include miRNA silencing, antisense blocking, 

epigenetic modification, DNA copy number change, and 
genetic mutations [24]. A useful strategy for tumor suppres-
sion involves the overexpression of miRNAs that suppress 
tumor growth and development. Thus, miRNAs are sig-
nificant mediators of human physiology and disease and 
are crucial to early detection and prognosis of the disease 
and treatment-related decision-making. 

miRNAs and cancer

Studies on miRNAs majorly focus on their potential 
role in tumor development. The function of miRNAs is 
similar to that of oncogenes or tumor suppressor genes, 
which are closely related to tumor development. First, 
research on worms and fruit flies confirmed that miR-
NA function to regulate cell proliferation and apoptosis, 
which suggests that they are closely associated with hy-
perplastic diseases such as cancer. Second, many miRNA 
genes have been confirmed to be located in areas along 
with the variation of the tumor in the genome. Third, 
compared with normal tissue, tumor tissue or tumor cell 
lines exhibit widespread abnormal expression of regula-
tory miRNAs. Studies have found that mutations, dele-
tions, and imbalance of post-transcriptional regulation, 
modification of DNA methylation in the promoter region 
of genes encoding miRNAs, and abnormal protein bind-
ing can cause abnormal expression of miRNAs.

Approximately more than 50% of human miRNA 
genes are located in cancer-associated regions or at chro-
mosome fragile sites, which are susceptible to gene dele-
tion, amplification, and mutations. In addition, abnormal 
expression of miRNA has been observed in many human 
cancers. Negative regulation of tumor growth by miRNAs 
has been observed in pancreatic cancer [25], breast cancer 
[26], prostate cancer [27], liver cancer [28], colon cancer [29–30], 
and ovarian cancer [31]. Amplification of the miR-17–92 
cluster in human B-cell lymphomas and upregulation of 
miR-155 in Burkitt’s lymphoma have also been reported 
as examples of associations of oncogenic miRNA with hu-
man cancers [19, 32–33]. Different tumor tissues have mark-
edly different miRNA expression spectra, with respect to 
the quantity and richness of miRNA expression. Another 
important aspect of the association of miRNAs with can-
cer is that the expression of some miRNAs is upregulated 
in some cancers, while in others, the expression of miR-
NAs may be downregulated, which indicates that miR-
NAs may be oncogenic or act as tumor suppressors. For 
example, in breast cancer, miR-10b [34], miR-21 [35], miR-
22 [36], miR-27a [37], miR-155 [38], miR-210 [39], miR-221 [40], 
miR-222 [40], miR-328 [41], miR-373 [42], and miR-520c [42] 

were found to be upregulated, while let-7 [43], miR-7 [44], 
miR-9-1 [45], miR-17/miR-20 [46], miR-31 [47], miR-125a [48], 
miR-125b [49], miR-146 [50], miR-200 family [51–52], miR-
205 [52], miR-206 [53], and miR-335 [54] were found to be 

Table 2 Tissue-specfic miRNA expression signatures
Expression pattern MicroRNA
Enriched in brain miR-12a, miR-125b, miR-128, miR-132,

 miR-139, miR-7, miR-9, miR-153,
 miR-124a, miR-124b, miR-135, miR-149,
 miR-183, miR-190, miR-219

Enriched in lung miR-18, miR-19a, miR-24, 
 miR-32, miR-130, miR-213, 
 miR-20, miR-141, miR-193, miR-200b

Enriched in spleen miR-99a, miR-127, miR-142a, miR-142s,
 miR-151, miR-189, miR-212

Enriched in liver miR-122a, miR-152, miR-194,
 miR-199, miR-215

Enriched in heart miR-1b, miR-1d, miR-133, miR-206, 
 miR-208, miR-143

Enriched in kidney miR-30b, miR-30c, miR-18, miR-20, 
 miR-24, miR-32, miR-141,
 miR-193, miR-200b

Enriched in miR-181, miR-223, miR-142
 haematopoetic tissues
Ubiquitously expressed miR-16, miR-26a, miR-27a, miR-143a,

 miR-21, let-7a, miR-7b, 
 miR-30b, miR-30c
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downregulated. In chronic lymphocytic leukemia, miR-
21 [55] and miR-155 [55] are upregulated, while miR-15 [18], 
miR-16 [18], miR-29b [56], miR-29c [56], miR-34a [56], miR-
143 [57], miR-145 [57], miR-181b [56], and miR-223 [56] are 
downregulated. In lung cancer, the miR-17-92 cluster, 
miR-21, miR-106a, and miR-155 are upregulated, while 
miR-1, the let-7 family, miR-7, miR-15a/miR-16, and 
the miR-29 family are downregulated [44, 58–61]. miR-221 
and miR-222 are upregulated in prostate cancer, while 
the miR-15a-miR-16-1 cluster, miR-101, miR-127, and 
miR-449a are downregulated [32–44]. As for hepatocellular 
carcinoma, the miR-17-92 cluster, miR-21, miR-143, and 
miR-224 are upregulated, while miR-1, miR-101, and 
miR-122a are downregulated [28, 62–66]. Early studies in the 
field of neurobiology have shown that the tissue-specific 
abundant expression of miR-124 and miR-9 in the brain 
is regulated during brain development or during develop-
ment of neurons and astrocytes in culture [67–68]. The spa-
tial expression patterns of several miRNAs in human brain 
samples has revealed that miR-124 appears to be widely 
expressed in differentiated neurons, while miR-9 is more 
prominently expressed at an earlier stage in proliferating 
neuronal precursors [67, 69]. In addition, miRNA regula-
tion has showed its significance in glioma development. 
miR-21 was found to be overexpressed in high-grade 
gliomas [70–71]. In addition, Chen [72] found that miR-107 
inhibits glioma cell proliferation, migration, and inva-
sion, and indicated that it could be a potential therapeutic 
target for glioma. Another study [73] showed that osthole 
could restrain the proliferation of human glioma cells and 
promote their apoptosis by upregulating the expression 
of miR-16 and downregulating the expression of MMP-9. 
Furthermore, through a study evaluating the expression 
of selected miRNAs (miR-16, -17, -19a, R-20a, -140, and 
-184) in an independent set of low-grade and secondary 
glioblastoma multiforme samples, the grade-associated 
regulation of these miRNAs was confirmed [74].

Role of miRNAs in the immune system

Since miRNAs are associated with the regulation of 
multiple genes, it is true for miRNAs involved in immune 
function. miRNAs have been shown to be associated with 
the proliferation of quiescent naïve T cells and effector T 
cells capable of differentiation that produce various cy-
tokines during an effective immune response, as a result 
of their progressive differentiation owing to a marked 
change in gene expression profiles during and after infec-
tion, where they are expected to influence fundamental 
cellular processes [75–77]. Several miRNAs appear to be vital 
players in immunity. For example, miR-155, which has 
a specific role in inflammatory stress, has been identi-
fied as a key player in the biology of lymphocytes [21, 78]. 
miR-155 was found to be oncogenic after mice expressing 

miR-155 in B cells developed lymphoma [79]. Moreover, 
miR-155 also plays a significant role in Alzheimer’s dis-
ease by regulating T-cell functions during inflammation 
[80]. Another finding about miR-155 was that it could pro-
mote dendritic cell migration toward sites of ATP release, 
accompanied by inflammasome activation [81]. Members 
of the human miR-146 family have been identified as vi-
tal inflammatory inducers that regulate Toll-like receptor 
(TLR) signaling by a negative feedback mechanism [82]. 
miR-146a has been observed to regulate the innate im-
mune response as a negative regulator of the expression of 
the NF-κB components IRAK1 and TRAF6, which encode 
key adapter molecules downstream of Toll-like receptors, 
by interfering with the NF-κB pathway [21–22, 83–84]. In ad-
dition, the miR-146 family was found to be involved in 
regulating lipid metabolism during inflammation through 
test the expression of the downstream factors of MyD88-
Traf6 pathway, pro-inflammatory genes, after knocking 
down miR-146a and miR-146b expression [82]. miR-150 is 
highly upregulated during the development of mature T 
and B cells and is crucial to their terminal stages of differ-
entiation [85–86]. miR-181 was preferentially expressed in B 
cells and its ectopic expression in hematopoietic progeni-
tor cells during lineage differentiation led to a doubling of 
the number of cells of the B-lymphoid lineage [87].

miRNA-based clinical applications 

Clinical research studies are currently focused on an 
increasing number of miRNAs. The miRNA-based clas-
sification of tumors seems to be more accurate than the 
mRNA expression profile-based classification of tumors 
[88]. Moreover, miRNAs could become useful tools in can-
cer diagnosis and prognosis and be effective therapeutic 
targets. Their applications in clinical practice mainly fo-
cus on two aspects: (1) First, their use as biomarkers of 
disease. miRNA profiles are potentially useful as early 
detection, classification, prognostic, and predictive bio-
markers. As early detection biomarkers, they indicate the 
onset of a disease and often play a role in the disease. (2) 
Second, their use as attractive therapeutic targets. Various 
studies are underway worldwide to tap the potential of 
miRNAs for use as disease biomarkers. From http://www.
clinicaltrials.gov/, a service of the U.S. National Institutes 
of Health, we found some pre-clinical trials evaluating 
the use of certain miRNAs as biomarkers of a particular 
disease (Table 3).

miRNAs have garnered considerable interest owing to 
their close association with many important diseases. As 
crucial targets for drug development, drugs correspond-
ing to the miRNAs can be designed such that they achieve 
their therapeutic effect via the upregulation or downreg-
ulation of miRNAs or via silencing of miRNA expression. 
At present, molecular drug design based on miRNA is 
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still in its infancy. Many studies have mainly focused on 
simulating miRNAs to enhance the effectiveness of their 
role in targeting genes, or on designing small molecules as 
miRNA antagonists, such as miRNA antisense oligomeric 
nucleotides (anti-miRNA oligonucleotides, AMOs) and 
miRNA antagonism molecules (such as antagomirs).

The design of nucleic acid drugs in 2008 opened a new 
page of history in miRNA-based drug design. It should be 
noted that the first drug targeting miRNA was named mi-
ravirsen. The Danish pharmaceutical company Santaris 
Pharma announced that it would be the first to imple-
ment miRNA targets for drug clinical trials worldwide. 
Miravirsen is an antisense oligonucleotide with a locked 
nucleic acid (LNA)-modified oligonucleotide (SPC3649) 
complementary to miR-122. miR-122, expressed in the 
liver, is related to the replication of the hepatitis C virus 
(HCV) and to the regulation of cholesterol and lipid me-
tabolism [89–90]. LNA nucleosides are a class of nucleic acid 
analogues in which an extra methylene bridge fixes the 
ribose moiety either in the C3’-endo or C2’-endo confor-
mation. By locking the molecule, LNA oligonucleotides 
display unprecedented hybridization affinity towards 
complementary single-stranded RNA or double-stranded 
DNA [91–92]. In addition, they display excellent mismatch 
discrimination and high aqueous solubility. So-called 
LNA anti-miR constructs have been used successfully 
in several in vitro studies to knock down the expression 
of specific miRNAs [93–94]. According to the results of the 
phase I clinical trials of the drug, a dose-dependent ef-
fect of the drug on the reduction of HCV RNA levels was 
observed for an extended period, which was consistent 
with the results of the pre-clinical studies. According 
to the preliminary data obtained in phase II clinical tri-
als, 18 individuals received miravirsen therapy, and six 
other individuals received a placebo treatment. No seri-
ous adverse reactions were observed, and the side effects 
included headache, diarrhea, and rhinitis; however, these 
side effects were moderate and infrequent [89]. 

Conclusion and future prospects

miRNAs have attracted considerable attention owing 
to their important role in cell differentiation, biological 
development, and in the development of various diseases. 
With further studies on the mechanisms underlying miR-
NA function and on the relationships between miRNAs 
and diseases by using the latest high-throughput tech-
nology such as miRNAs chips, our understanding of the 
network of gene expression and regulation in eukaryotic 
cells will reach a new and higher level. 

Various studies have found that miRNAs are signifi-
cant mediators in human physiology and disease and are 
crucial to early detection and prognosis of the disease and 
treatment-related decision-making. Although the study 
of miRNAs has made great progress, especially with re-
spect to the function of miRNAs in cell differentiation, 
gene regulation, and disease control, currently, the study 
of miRNAs is still in its nascent stage, with many genes 
yet to be identified and the mechanisms underlying the 
functions of most genes yet to be elucidated. As for the 
clinical applications, several technical hurdles to miRNA 
research remain, e.g., the cost of miRNA profiling and 
the development of drugs targeting miRNA is still high. 
Moreover, it is still technically difficult to achieve long-
term and stable silencing of miRNA expression.
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