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Gastric cancer is a disease that affects people world-
wide, and is the second leading cause of cancer-related 
deaths [1]. China is the country with a high incidence of 
gastric cancer, and in 2002, approximately 41% of new 
gastric cancer cases worldwide were from China [2]. Heli-
cobacter pylori (H. pylori) infection is the primary cause 
of gastric cancer, and contributes to an estimated 32% 
risk of developing gastric cancer [3]. H. pylori-related gas-
tric cancer results from a chronic inflammatory process 
that arises from atrophic gastritis, and develops into in-
testinal metaplasia, hyperplasia, and eventually into gas-
tric adenocarcinoma [4]. The World Health Organization 
has classified H. pylori as a class I human carcinogen [5]. 
Approximately half of the world’s population is infected 
with H. pylori; however, fewer than 3% of the infected 
individuals develop gastric cancer [6]. The occurrence of 
H. pylori-related gastric cancer not only depends on H. 
pylori infection, but also on the host’s genetic susceptibil-
ity, which particularly involves genetic variants related 
to immune and inflammatory response [7]. Here, we re-

view the role of host inflammatory gene variants in H. 
pylori-related gastric cancer.

Mechanisms by which H. pylori induces 
gastric cancer 

H. pylori is a gram-negative, urease-positive, spiral-
shaped bacillus that infects the gastric mucosa. H. pylori 
infection is one of the most common chronic bacterial 
infections in the world. Once acquired, the infection per-
sists for decades in the gastric mucosa, triggering sophis-
ticated, innate, and adaptive immune responses [8]. H. py-
lori can induce the activation of transcription factors that 
regulate cytokine gene expression. Cytokines produced 
during H. pylori infection, such as the interleukin (IL)-
1β and tumor necrosis factor (TNF)-α, can regulate the 
physiological processes in the stomach, such as inhibiting 
gastric secretion and retarding gastric emptying [9]. H. py-
lori-induced inflammation is mediated by pro- and anti-
inflammatory cytokines, which are produced to eliminate 
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the invading pathogen and protect the host from patho-
gen-associated damage [10]. The development of atrophic 
gastritis, which is the most important stage in the devel-
opment of H. pylori-induced gastric cancer, is related to 
the severity and extent of inflammation [11].

In addition, H. pylori is able to activate pro-inflamma-
tory cyclooxygenase (COX) enzymes and phospholipase 
A2, which are catalysts in the key steps of the inflamma-
tory pathway [12–13]. Sung et al found that COX-2 expres-
sion was increased in atrophic gastritis, intestinal meta-
plasia, and gastric cancer lesions in H. pylori infection, 
and that the eradication of H. pylori infection may lead 
to the reduction of COX-2 expression [14]. However, the 
changes in COX-2 expression are not associated with a 
progression of intestinal metaplasia. Another study found 
that the use of COX-inhibitors, such as aspirin and other 
non-steroidal anti-inflammatory drugs, could decrease the 
risk of gastric cancer [15]. H. pylori can induce the release 
of reactive oxygen and nitrogen species in the inflamma-
tory response, which can cause damage to DNA and cause 
somatic mutations that promote oncogenesis [16]. Reactive 
oxygen species (ROSs) can produce single-stranded and 
double-stranded DNA breaks, which increase the risk of 
chromosome instabilities [17–18]. H. pylori can also induce 
gene methylation of multiple CpG islands, especially at 
the promoter sites relevant to the initiation and progres-
sion of gastric cancer [19]. While H. pylori is the main 
cause of gastric carcinogenesis, other causes include life-
style, socioeconomic status, pernicious anemia, and host 
genetic variants.

Host inflammatory gene variants 
in H. pylori-related gastric cancer

The role of host inflammatory gene variants in H. py-
lori-related gastric cancer has been widely studied world-
wide. Single nucleotide polymorphisms (SNPs) of inflam-
matory genes may affect gene transcription or splicing, 
leading to altered protein expression, and subsequently 
different immune responses against H. pylori. The fol-
lowing section describes the host gene variants related to 
immune and inflammatory responses that are associated 
with susceptibility to H. pylori-related gastric cancer.

IL-1
The IL-1 gene family is located on chromosome 2, and 

encodes three cytokines: IL-1α, IL-1β, and the IL-1 recep-
tor antagonist (IL-1ra) [20]. H. pylori infection can induce 
the upregulation of IL-1β, which induces and promotes 
H. pylori-associated inflammation [21]. IL-1β is a pro-in-
flammatory cytokine that inhibits gastric acid secretion 
[9]. Three polymorphisms (T-31C, C-511T, and T+3954C) 
of the IL-1β gene have been reported, all of which are lo-
cated in the gene’s promoter region. El-Omar et al found a 

significant association between the IL-1B gene polymor-
phisms, T-31C and C-511T, and the risk of H. pylori-as-
sociated gastric cancer, precancerous lesions, hypochlor-
hydria, and atrophic gastritis in the Caucasian population. 
In addition, this study determined that in the absence of 
H. pylori infection, individuals with mutant genotypes 
showed increased expression of IL-1β than those with 
wild genotypes [22]. This finding was supported by re-
search that also identified another IL-1β locus, T+3954T, 
which is associated with an increased risk of gastric can-
cer [23–24]. Additionally, the IL-1RN*2 polymorphism in 
the second intron of the IL-1RN gene, which encodes a 
variable number of tandem repeats, has been reported to 
be associated with an increased risk of chronic inflamma-
tion and autoimmune disease [22]. Meta-analysis revealed 
that IL-1RN*2 can increase the risk of gastric cancer in 
Caucasians, but not in the Asian population [25].

IL-8
IL-8 belongs to the family of CXC chemokines, and it 

plays an important role in H. pylori-related diseases. IL-8 
is induced by H. pylori infection and it affects cell pro-
liferation, migration, and tumor angiogenesis. The gene 
polymorphism, IL-8 –251T>A, located in the promoter 
region of the IL-8 gene, has a significant association with 
H. pylori-related gastric cancer. The adenine allele of 
the IL-8 –251T>A polymorphism is associated with an 
increased production of IL-8 by gastric mucosa cells in-
fected with H. pylori, and significantly increases the risk 
of H. pylori-related atrophic gastritis and gastric cancer 
[26]. However, this finding has not been confirmed in some 
Caucasian and Asian populations [27–28]. These studies sug-
gest that the effect of this genetic polymorphism on sus-
ceptibility to H. pylori-associated gastric cancer may have 
regional differences.

IL-10
IL-10 is an anti-inflammatory cytokine that can down-

regulate IL-1β, TNF-α, interferon-γ, and other pro-in-
flammatory cytokines. IL-10 production can decrease the 
extent of inflammatory damage to the gastric mucosa due 
to H. pylori infection. Three IL-10 gene polymorphisms, 
IL-10 –1082G, –592C, and –819C, located in the promoter 
region, are associated with an increased risk of H. pylori-
related gastric cancer [29–30]. Furthermore, El-Omar et al 
found that the combination of all three IL-10 polymor-
phisms (IL-10 ATA haplotype) further increased the risk 
of non-cardia cancer [31].

TNF-α
The pro-inflammatory cytokine, TNF-α, is produced 

in the gastric mucosa in response to H. pylori infection, 
and it inhibits the secretion of gastric acid, similar to 
IL-1β. The TNF-α –308G>A polymorphism is associated 
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with inflammatory disorders, and the adenine allele of 
the TNF-α –308G>A polymorphism increases the risk 
of non-cardia gastric cancer [32]. However, this associa-
tion was not confirmed in some populations [33]. Another 
TNF-α polymorphism, TNF-α –238, has been associated 
with a significantly reduced risk of H. pylori-related gas-
tric cancer [34]; however, this was not confirmed by other 
studies [29, 35].

Toll-like receptors
Toll-like receptors (TLRs) are signaling receptors that 

recognize lipopolysaccharides of H. pylori, and can initi-
ate signal transduction pathways that trigger the expres-
sion of pro-inflammatory genes, such as IL-1A, IL-1B, IL-
8, and TNF-α [36–37]. Arbour et al found that a functional 
SNP, TLR4+ 896A>G (rs4986790), located on the fourth 
exon of TLR4, can cause a missense mutation, from as-
partic acid to glycine (Asp299Gly), resulting in the struc-
tural change of the TLR4 receptor domain [38]. Hold et al 
found that for H. pylori-infected individuals, the TLR4+ 
896A>G polymorphism was shown to be associated with 
non-cardia gastric carcinoma, as well as the associated 
precursor diseases, including gastric atrophy and hypo-
chlorhydria [39]. In addition, another gene polymorphism, 
TLR1 602S (T1805G), was shown to be significantly as-
sociated with a reduced risk of H. pylori-related gastric 
ulcers and gastric cancer [40].

Inflammatory gene polymorphisms 
found in genome-wide association 
studies

Genome-wide association studies (GWAS) of gastric 
cancer have identified novel susceptibility loci, which 
have offered new molecular insights into gastric carci-
nogenesis [41–42]. Some SNPs identified in the GWAS are 
located on the genes related to inflammatory response. 
The Mucin1 (MUC1) protein is a receptor for H. pylori, 
which can limit the colonization of H. pylori and the 
inflammation caused by infection [43]. The MUC1 SNP, 
rs4072037 (G>A), located on the second exon of MUC1, 
determines a splicing acceptor site in the signal peptide 
region. The GWAS reported that the variant allele gua-
nine of rs4072037 was associated with a decreased risk of 
gastric cancer [41]. Furthermore, a multiplicative interac-
tion has been found between H. pylori seropositivity and 
the gene variants of MUC1 [44]. The guanine allele is asso-
ciated with increased expression of the MUC1 protein in 
gastric cancer tissue [45]. In addition, it has been reported 
that mice deficient of MUC1 are more susceptible to H. 
pylori gastritis [43]. Other gene polymorphisms located on 
inflammatory genes, such as rs13361707 and rs2274223, 
were identified in the GWAS to be associated with gastric 
cancer. However, the mechanisms by which these gene 

variants are associated with H. pylori-related gastric can-
cer is poorly understood.

Gastric cancer is an inflammation-related malignancy 
induced by infection, and develops after several decades 
in individuals with a genetic predisposition. Preventing 
H. pylori infection, or eradicating it before irreversible 
damage is established, is the most effective strategy to 
eliminate this cancer. Eradication of H. pylori infections 
may promote the resolution of inflammation, and may 
also reduce the risk of gastric cancer [46–47]. However, the 
possibility of reducing the risk of gastric carcinogenesis 
by H. pylori eradication depends on the level of gastric 
atrophic damage at the time when the H. pylori infection 
is cured. If the infection is cured at the stage of non-atro-
phic gastritis and metaplastic epithelia, then the risk of 
cancer is minimal. However, cancer risk remains in pa-
tients who have already developed atrophic gastritis, and 
the risk is associated with the extent and severity of atro-
phic changes [48–49]. In Japan, the guidelines for H. pylori 
management considered all H. pylori-infected patients as 
having a high risk of developing H. pylori-associated dis-
orders, and that follow-up endoscopic surveillance was 
necessary for all infected individuals, even after the H. 
pylori infection had been cured [50].

Although an H. pylori infection will not induce obvi-
ous clinical symptoms in most people, it may lead to the 
development of serious diseases, such as gastric cancer. 
Gastric cancer is still a great threat to public health, with 
high incidences and a poor prognosis. Gastric carcino-
genesis is a complex process that involves host gene poly-
morphisms, bacteria toxicity, and environmental factors. 
More research is needed to develop a more comprehen-
sive understanding of the host gene mutations that are 
associated with susceptibility to H. pylori-related gastric 
cancer. This information will aid in our understanding of 
the pathogenesis of gastric cancer in order to prevent and 
eliminate further occurrences of H. pylori-related gastric 
cancer.
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